Add tooltip functionality for neuron hover and adjust linear acceleration clamping
Some checks failed
Build Simulation and Test / Run All Tests (push) Failing after 42s
Some checks failed
Build Simulation and Test / Run All Tests (push) Failing after 42s
This commit is contained in:
parent
6c98d5d84e
commit
75e4948557
89
ui/hud.py
89
ui/hud.py
@ -5,6 +5,7 @@ import pygame
|
||||
from config.constants import *
|
||||
from world.base.brain import CellBrain, FlexibleNeuralNetwork
|
||||
from world.objects import DefaultCell
|
||||
import math
|
||||
|
||||
|
||||
class HUD:
|
||||
@ -173,13 +174,24 @@ class HUD:
|
||||
LAYER_LABEL_BOTTOM_MARGIN = 15 # Distance below visualization for layer labels
|
||||
|
||||
# Info text positioning constants
|
||||
INFO_TEXT_TOP_MARGIN = 35 # Distance below visualization for info text
|
||||
INFO_TEXT_TOP_MARGIN = 40 # Distance below visualization for info text
|
||||
INFO_TEXT_LINE_SPACING = 15 # Vertical spacing between info text lines
|
||||
|
||||
# Activation value clamping
|
||||
ACTIVATION_CLAMP_MIN = -1 # Minimum activation value for visualization
|
||||
ACTIVATION_CLAMP_MAX = 1 # Maximum activation value for visualization
|
||||
|
||||
# --- Tooltip constants ---
|
||||
TOOLTIP_X_OFFSET = 12
|
||||
TOOLTIP_Y_OFFSET = 8
|
||||
TOOLTIP_PADDING_X = 5
|
||||
TOOLTIP_PADDING_Y = 3
|
||||
TOOLTIP_BG_COLOR = (40, 40, 40)
|
||||
TOOLTIP_BORDER_COLOR = WHITE
|
||||
TOOLTIP_BORDER_WIDTH = 1
|
||||
TOOLTIP_MARGIN = 10
|
||||
TOOLTIP_LINE_SPACING = 0 # No extra spacing between lines
|
||||
|
||||
if not hasattr(cell, 'behavioral_model'):
|
||||
return
|
||||
|
||||
@ -374,3 +386,78 @@ class HUD:
|
||||
info_rect.left = viz_x
|
||||
info_rect.top = viz_y + VIZ_HEIGHT + INFO_TEXT_TOP_MARGIN + i * INFO_TEXT_LINE_SPACING
|
||||
screen.blit(info_text, info_rect)
|
||||
|
||||
# --- Tooltip logic for neuron hover ---
|
||||
mouse_x, mouse_y = pygame.mouse.get_pos()
|
||||
tooltip_text = None
|
||||
|
||||
for (layer_idx, neuron_idx), pos in neuron_positions.items():
|
||||
dx = mouse_x - pos[0]
|
||||
dy = mouse_y - pos[1]
|
||||
dist = math.hypot(dx, dy)
|
||||
if dist <= NEURON_RADIUS + 3:
|
||||
neuron = network.layers[layer_idx][neuron_idx]
|
||||
label = None
|
||||
value_str = None
|
||||
|
||||
# Show input/output name if applicable
|
||||
if neuron['type'] == 'input' and layer_idx == 0:
|
||||
if neuron_idx < len(cell_brain.input_keys):
|
||||
key = cell_brain.input_keys[neuron_idx]
|
||||
label = f"Input: {key}"
|
||||
# Show normalized input value
|
||||
raw_value = cell_brain.inputs.get(key, 0.0)
|
||||
normalized_value = cell_brain._normalize_input(key, raw_value)
|
||||
value_str = f"Value: {normalized_value:.2f}"
|
||||
elif neuron['type'] == 'output':
|
||||
if neuron_idx < len(cell_brain.output_keys):
|
||||
key = cell_brain.output_keys[neuron_idx]
|
||||
label = f"Output: {key}"
|
||||
# Show output value (already actual, not normalized)
|
||||
value = cell_brain.outputs.get(key, 0.0)
|
||||
value_str = f"Value: {value:.2f}"
|
||||
else:
|
||||
# For hidden neurons, show activation value
|
||||
if layer_idx < len(activations) and neuron_idx < len(activations[layer_idx]):
|
||||
value = activations[layer_idx][neuron_idx]
|
||||
value_str = f"Value: {value:.2f}"
|
||||
|
||||
# Show bias if present
|
||||
bias = neuron.get('bias', None)
|
||||
bias_str = f"Bias: {bias:.2f}" if bias is not None else None
|
||||
|
||||
# Compose tooltip text
|
||||
tooltip_lines = []
|
||||
if label:
|
||||
tooltip_lines.append(label)
|
||||
if value_str:
|
||||
tooltip_lines.append(value_str)
|
||||
if bias_str:
|
||||
tooltip_lines.append(bias_str)
|
||||
tooltip_text = "\n".join(tooltip_lines) if tooltip_lines else None
|
||||
break
|
||||
|
||||
if tooltip_text:
|
||||
lines = tooltip_text.split('\n')
|
||||
tooltip_surfs = [self.legend_font.render(line, True, WHITE) for line in lines]
|
||||
width = max(surf.get_width() for surf in tooltip_surfs) + TOOLTIP_MARGIN
|
||||
height = sum(surf.get_height() for surf in tooltip_surfs) + TOOLTIP_MARGIN
|
||||
|
||||
# Default position: right and below cursor
|
||||
tooltip_x = mouse_x + TOOLTIP_X_OFFSET
|
||||
tooltip_y = mouse_y + TOOLTIP_Y_OFFSET
|
||||
|
||||
# Adjust if off right edge
|
||||
if tooltip_x + width > SCREEN_WIDTH:
|
||||
tooltip_x = mouse_x - width - TOOLTIP_X_OFFSET
|
||||
# Adjust if off bottom edge
|
||||
if tooltip_y + height > SCREEN_HEIGHT:
|
||||
tooltip_y = mouse_y - height - TOOLTIP_Y_OFFSET
|
||||
|
||||
tooltip_rect = pygame.Rect(tooltip_x, tooltip_y, width, height)
|
||||
pygame.draw.rect(screen, TOOLTIP_BG_COLOR, tooltip_rect)
|
||||
pygame.draw.rect(screen, TOOLTIP_BORDER_COLOR, tooltip_rect, TOOLTIP_BORDER_WIDTH)
|
||||
y = tooltip_rect.top + TOOLTIP_PADDING_Y
|
||||
for surf in tooltip_surfs:
|
||||
screen.blit(surf, (tooltip_rect.left + TOOLTIP_PADDING_X, y))
|
||||
y += surf.get_height() + TOOLTIP_LINE_SPACING
|
||||
|
||||
@ -292,7 +292,7 @@ class DefaultCell(BaseEntity):
|
||||
output_data = self.behavioral_model.tick(input_data)
|
||||
|
||||
# clamp accelerations
|
||||
output_data["linear_acceleration"] = max(-0.1, min(0.02, output_data["linear_acceleration"]))
|
||||
output_data["linear_acceleration"] = max(-0.1, min(0.1, output_data["linear_acceleration"]))
|
||||
output_data["angular_acceleration"] = max(-0.1, min(0.1, output_data["angular_acceleration"]))
|
||||
|
||||
# 2. Apply drag force
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user