Compare commits
	
		
			No commits in common. "3b64ef62e15877b3dff517f876b0698e9d62c867" and "bada025b33d4079ec32b062bf2d55ed3fb6a9ab1" have entirely different histories.
		
	
	
		
			3b64ef62e1
			...
			bada025b33
		
	
		
| @ -8,7 +8,6 @@ dependencies = [ | ||||
|     "pre-commit>=4.2.0", | ||||
|     "pydantic>=2.11.5", | ||||
|     "pygame>=2.6.1", | ||||
|     "pygame-gui>=0.6.14", | ||||
|     "pytest>=8.3.5", | ||||
| ] | ||||
| 
 | ||||
|  | ||||
| @ -1,53 +0,0 @@ | ||||
| # This file was autogenerated by uv via the following command: | ||||
| #    uv pip compile -o requirements.txt pyproject.toml | ||||
| annotated-types==0.7.0 | ||||
|     # via pydantic | ||||
| cfgv==3.4.0 | ||||
|     # via pre-commit | ||||
| distlib==0.3.9 | ||||
|     # via virtualenv | ||||
| filelock==3.18.0 | ||||
|     # via virtualenv | ||||
| identify==2.6.12 | ||||
|     # via pre-commit | ||||
| iniconfig==2.1.0 | ||||
|     # via pytest | ||||
| nodeenv==1.9.1 | ||||
|     # via pre-commit | ||||
| numpy==2.3.0 | ||||
|     # via dynamicsystemabstraction (pyproject.toml) | ||||
| packaging==25.0 | ||||
|     # via pytest | ||||
| platformdirs==4.3.8 | ||||
|     # via virtualenv | ||||
| pluggy==1.6.0 | ||||
|     # via pytest | ||||
| pre-commit==4.2.0 | ||||
|     # via dynamicsystemabstraction (pyproject.toml) | ||||
| pydantic==2.11.7 | ||||
|     # via dynamicsystemabstraction (pyproject.toml) | ||||
| pydantic-core==2.33.2 | ||||
|     # via pydantic | ||||
| pygame==2.6.1 | ||||
|     # via dynamicsystemabstraction (pyproject.toml) | ||||
| pygame-ce==2.5.5 | ||||
|     # via pygame-gui | ||||
| pygame-gui==0.6.14 | ||||
|     # via dynamicsystemabstraction (pyproject.toml) | ||||
| pygments==2.19.1 | ||||
|     # via pytest | ||||
| pytest==8.4.1 | ||||
|     # via dynamicsystemabstraction (pyproject.toml) | ||||
| python-i18n==0.3.9 | ||||
|     # via pygame-gui | ||||
| pyyaml==6.0.2 | ||||
|     # via pre-commit | ||||
| typing-extensions==4.14.0 | ||||
|     # via | ||||
|     #   pydantic | ||||
|     #   pydantic-core | ||||
|     #   typing-inspection | ||||
| typing-inspection==0.4.1 | ||||
|     # via pydantic | ||||
| virtualenv==20.31.2 | ||||
|     # via pre-commit | ||||
							
								
								
									
										52
									
								
								uv.lock
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										52
									
								
								uv.lock
									
									
									
										generated
									
									
									
								
							| @ -47,7 +47,6 @@ dependencies = [ | ||||
|     { name = "pre-commit" }, | ||||
|     { name = "pydantic" }, | ||||
|     { name = "pygame" }, | ||||
|     { name = "pygame-gui" }, | ||||
|     { name = "pytest" }, | ||||
| ] | ||||
| 
 | ||||
| @ -62,7 +61,6 @@ requires-dist = [ | ||||
|     { name = "pre-commit", specifier = ">=4.2.0" }, | ||||
|     { name = "pydantic", specifier = ">=2.11.5" }, | ||||
|     { name = "pygame", specifier = ">=2.6.1" }, | ||||
|     { name = "pygame-gui", specifier = ">=0.6.14" }, | ||||
|     { name = "pytest", specifier = ">=8.3.5" }, | ||||
| ] | ||||
| 
 | ||||
| @ -315,47 +313,6 @@ wheels = [ | ||||
|     { url = "https://files.pythonhosted.org/packages/7e/11/17f7f319ca91824b86557e9303e3b7a71991ef17fd45286bf47d7f0a38e6/pygame-2.6.1-cp313-cp313-win_amd64.whl", hash = "sha256:813af4fba5d0b2cb8e58f5d95f7910295c34067dcc290d34f1be59c48bd1ea6a", size = 10620084, upload-time = "2024-09-29T11:48:51.587Z" }, | ||||
| ] | ||||
| 
 | ||||
| [[package]] | ||||
| name = "pygame-ce" | ||||
| version = "2.5.5" | ||||
| source = { registry = "https://pypi.org/simple" } | ||||
| sdist = { url = "https://files.pythonhosted.org/packages/c9/be/af69521e694442dbde5db29069953f25367ddacaa50d9ae644745853d37c/pygame_ce-2.5.5.tar.gz", hash = "sha256:a7f297c223c6e35f16d65d47a19757005763ea7e90795ccc37c0bc562364ae6b", size = 5821935, upload-time = "2025-06-07T07:33:03.501Z" } | ||||
| wheels = [ | ||||
|     { url = "https://files.pythonhosted.org/packages/48/ff/65c13ed5a0ca7c186e054a416f74e1a73ab90e6fc62b8c133e07d1fe321b/pygame_ce-2.5.5-cp311-cp311-macosx_10_11_x86_64.whl", hash = "sha256:7697ca838c560e16a305de47a4ea3ad3152ebc7927b309f4251d5718b38db388", size = 12415712, upload-time = "2025-06-07T07:31:25.624Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/22/17/80c6c64373d7488e5c15f70245093146880574cbb962222f03d30c7bbc4f/pygame_ce-2.5.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:683d91ce985192106014b1cc887f2f6d257f4e2329d49b6942d2cd46f030cc8a", size = 11654443, upload-time = "2025-06-07T07:31:28.212Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/f6/34/adf751a50a85f61f42e80cbad684f74fe0f26cb030f16c04b45392000248/pygame_ce-2.5.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:524fbda5e132abfbeda9c296d523bc3adbe9ad33498d04762ff9c7912818c3f2", size = 12304561, upload-time = "2025-06-07T07:31:30.744Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/15/19/1647079f2883454f0a0e532f8e76a784984a77a23bd1a9a6fbffe4746a9e/pygame_ce-2.5.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:81ea332ee9c51ccc66cbe73124a13264c303ab842aca093c2f5f2282f55c168c", size = 12835077, upload-time = "2025-06-07T07:31:33.811Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/94/a6/5167c4ab343fe8ef62a360af1dacd585eb57ea42b62eb9339687e998bd39/pygame_ce-2.5.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d32e970b5f06a8710b098f178693456cc433170a7f94ef451e31d682d1a2f86", size = 12480565, upload-time = "2025-06-07T07:31:36.494Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/d6/27/80e5d042c2be4ec2d1a41f42fd61ed8661cd780343511bd9a8e5edb34548/pygame_ce-2.5.5-cp311-cp311-win32.whl", hash = "sha256:8642add37c09cef881812bfb6e7f7771e7d666f870e5640e473841bf34fd771b", size = 9804082, upload-time = "2025-06-07T07:31:39.095Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/da/fd/dff4d8b02bfda1be6a251747520de5e012fe56355d4fb44d4cae70290efe/pygame_ce-2.5.5-cp311-cp311-win_amd64.whl", hash = "sha256:13d1951bff009b2b1d593785fd43a9be6d3d6de0b1b0c0d85ad7d6e967d31c99", size = 10377304, upload-time = "2025-06-07T07:31:41.739Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/60/2c/45729f86bd7d1b67062be9c44618d7a4269a3892b35d9677e09f3409e91e/pygame_ce-2.5.5-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:cb6801f224a806f883e5de558d3424a53e714abec7d6a47d32fc6b9cfa92e598", size = 12409360, upload-time = "2025-06-07T07:31:44.103Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/6c/28/96d776b0c8efe9939c05ac15ea317b687cec6684ac9808d1c771029e308c/pygame_ce-2.5.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:adddaf63af2f5b5d0a3840aa73021b71766fa16c1ed3fc18756b54e90b66592f", size = 11660289, upload-time = "2025-06-07T07:31:46.725Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/24/01/48bad8a2431507efc3b357816cbbd4815bba063f09becd54f8d9c5b04b20/pygame_ce-2.5.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1602ed3dd274e36d5c6008ff2c500223bea38aab0d4fa4a8eae0a0e5897bcb88", size = 12290133, upload-time = "2025-06-07T07:31:49.188Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/ac/5d/0edb786e614bd8d5e2d34a864f0d0ac1ed6b035d7eea04976dbd35bb7e3f/pygame_ce-2.5.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb42884c847d54a40c98cf631ca8014406eaf8bbfeddde298269193c533a61eb", size = 12823259, upload-time = "2025-06-07T07:31:51.489Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/d5/72/3ae43a335e80f55f3243d674cf47becf17e2a4c565d745b961c50aeec7a1/pygame_ce-2.5.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13dec639f227dd1092b161e696769f8b6dfbeb92e4e4fabc729dc689a4c63997", size = 12467026, upload-time = "2025-06-07T07:31:53.792Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/0a/30/71e761df3d3567b59f7f73b938c682aaf2e6406d248d871ae5dd569d94e1/pygame_ce-2.5.5-cp312-cp312-win32.whl", hash = "sha256:356ba09a684a92b04330d3d6bb3136066a170aea15f300b078edda347b719fb2", size = 9802023, upload-time = "2025-06-07T07:31:55.983Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/8a/77/adca7896a89d2a30d974bd337ac8adfa14e031f52319c5bfa379be092ade/pygame_ce-2.5.5-cp312-cp312-win_amd64.whl", hash = "sha256:7863dbaf5c33bbba878b6e5aa1b11592048a96b383b11dac15a0837a14c30b62", size = 10378199, upload-time = "2025-06-07T07:31:58.046Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/13/d6/b72511c35d3c3ed07072cee07a1dea34e950375a225d181276c4b2316d3a/pygame_ce-2.5.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:32008bef532318c7f8d97fb087a16b44c0d5140969963b6afbf0f9521d18f3dc", size = 12403252, upload-time = "2025-06-07T07:32:00.325Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/5d/0e/23b4ea53172d8841cfaee5b5274581b2b7fa96426e6029dda0e37b369f86/pygame_ce-2.5.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:00004956921641d9dc7e628be77ea7f23333b839e48ec981704b6516537bd67f", size = 11654505, upload-time = "2025-06-07T07:32:02.91Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/5c/95/a58928af657fbba391d1691ce66f2afede3e8c65cb021b42e4488f6fd490/pygame_ce-2.5.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:255efe334dc69a78c3b7986b9c893ef86cead5aaf8c61cb6990949b4fca84142", size = 12286043, upload-time = "2025-06-07T07:32:05.147Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/5a/61/499b2d078c62c9b91a6ccd2e63805ac884e1715d307d083e54bbbd75a24d/pygame_ce-2.5.5-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c4b90f01d3ae8ae0f84361480531323bbd06e10be75f4e67478b999b43f8a1f9", size = 12821547, upload-time = "2025-06-07T07:32:07.347Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/d7/19/7f9a37b7ff55dc34a8f727b86b89800a1fdb4b1436e601dea66f89764472/pygame_ce-2.5.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e37bfd4545fb057ce24d06e13d1262989ca0ece3b12010c585130607e3c2bbf8", size = 12463330, upload-time = "2025-06-07T07:32:10.136Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/fa/f5/5ad50c34f042bbc135312cd75d86d156bf18f54b72ae8947498acbda8cbd/pygame_ce-2.5.5-cp313-cp313-win32.whl", hash = "sha256:476a1b56b19f5023ddd0512716f11c413c3587b93dfd4aebd40869f261d3b8b7", size = 9799763, upload-time = "2025-06-07T07:32:12.332Z" }, | ||||
|     { url = "https://files.pythonhosted.org/packages/a8/88/89cfcaf55c8ccab5a2d59f206bf7b7d4336c4b27d9b63531a0e274cac817/pygame_ce-2.5.5-cp313-cp313-win_amd64.whl", hash = "sha256:8568fab6d43e23ca209fb860f7d387f2f89bd4047a4fa617ed0951fd9739109c", size = 10376053, upload-time = "2025-06-07T07:32:14.526Z" }, | ||||
| ] | ||||
| 
 | ||||
| [[package]] | ||||
| name = "pygame-gui" | ||||
| version = "0.6.14" | ||||
| source = { registry = "https://pypi.org/simple" } | ||||
| dependencies = [ | ||||
|     { name = "pygame-ce" }, | ||||
|     { name = "python-i18n" }, | ||||
| ] | ||||
| wheels = [ | ||||
|     { url = "https://files.pythonhosted.org/packages/29/bf/d2589b06e39a6588480e6313ab530a6073a4ac6734d0f48a1883a5c46236/pygame_gui-0.6.14-py2.py3-none-any.whl", hash = "sha256:e351e88fab01756af6338d071c3cf6ce832a90c3b9f7db4fcb7b5216d5634482", size = 30896869, upload-time = "2025-05-30T18:25:53.938Z" }, | ||||
| ] | ||||
| 
 | ||||
| [[package]] | ||||
| name = "pytest" | ||||
| version = "8.3.5" | ||||
| @ -371,15 +328,6 @@ wheels = [ | ||||
|     { url = "https://files.pythonhosted.org/packages/30/3d/64ad57c803f1fa1e963a7946b6e0fea4a70df53c1a7fed304586539c2bac/pytest-8.3.5-py3-none-any.whl", hash = "sha256:c69214aa47deac29fad6c2a4f590b9c4a9fdb16a403176fe154b79c0b4d4d820", size = 343634, upload-time = "2025-03-02T12:54:52.069Z" }, | ||||
| ] | ||||
| 
 | ||||
| [[package]] | ||||
| name = "python-i18n" | ||||
| version = "0.3.9" | ||||
| source = { registry = "https://pypi.org/simple" } | ||||
| sdist = { url = "https://files.pythonhosted.org/packages/fe/32/d9ba976458c9503ec22db4eb677a5d919edaecd73d893effeaa92a67b84b/python-i18n-0.3.9.tar.gz", hash = "sha256:df97f3d2364bf3a7ebfbd6cbefe8e45483468e52a9e30b909c6078f5f471e4e8", size = 11778, upload-time = "2020-08-26T14:31:27.512Z" } | ||||
| wheels = [ | ||||
|     { url = "https://files.pythonhosted.org/packages/5a/73/9a0b2974dd9a3d50788d235f10c4d73c2efcd22926036309645fc2f0db0c/python_i18n-0.3.9-py3-none-any.whl", hash = "sha256:bda5b8d889ebd51973e22e53746417bd32783c9bd6780fd27cadbb733915651d", size = 13750, upload-time = "2020-08-26T14:31:26.266Z" }, | ||||
| ] | ||||
| 
 | ||||
| [[package]] | ||||
| name = "pyyaml" | ||||
| version = "6.0.2" | ||||
|  | ||||
| @ -1,8 +1,475 @@ | ||||
| from world.base.neural import FlexibleNeuralNetwork | ||||
| import numpy as np | ||||
| import random | ||||
| from copy import deepcopy | ||||
| 
 | ||||
| from config.constants import MAX_VELOCITY, MAX_ROTATIONAL_VELOCITY | ||||
| from world.behavioral import BehavioralModel | ||||
| 
 | ||||
| 
 | ||||
| class FlexibleNeuralNetwork: | ||||
|     """ | ||||
|     A flexible neural network that can mutate its structure and weights. | ||||
|     Supports variable topology with cross-layer connections. | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, input_size=2, output_size=2, empty_start=True): | ||||
|         self.input_size = input_size | ||||
|         self.output_size = output_size | ||||
| 
 | ||||
|         # Network structure: list of layers, each layer is a list of neurons | ||||
|         # Each neuron is represented by its connections and bias | ||||
|         self.layers = [] | ||||
| 
 | ||||
|         # Initialize network based on empty_start parameter | ||||
|         if empty_start: | ||||
|             self._initialize_empty_network() | ||||
|         else: | ||||
|             self._initialize_basic_network() | ||||
| 
 | ||||
|         self.network_cost = self.calculate_network_cost() | ||||
| 
 | ||||
|     def _initialize_basic_network(self): | ||||
|         """Initialize a basic network with input->output connections only.""" | ||||
|         # Input layer (no actual neurons, just placeholders) | ||||
|         input_layer = [{'type': 'input', 'id': i} for i in range(self.input_size)] | ||||
| 
 | ||||
|         # Output layer with connections to all inputs | ||||
|         output_layer = [] | ||||
|         for i in range(self.output_size): | ||||
|             neuron = { | ||||
|                 'type': 'output', | ||||
|                 'id': f'out_{i}', | ||||
|                 'bias': random.uniform(-1, 1), | ||||
|                 'connections': []  # List of (source_layer, source_neuron, weight) | ||||
|             } | ||||
| 
 | ||||
|             # Connect to all input neurons | ||||
|             for j in range(self.input_size): | ||||
|                 neuron['connections'].append((0, j, random.uniform(-2, 2))) | ||||
| 
 | ||||
|             output_layer.append(neuron) | ||||
| 
 | ||||
|         self.layers = [input_layer, output_layer] | ||||
| 
 | ||||
|     def _initialize_empty_network(self): | ||||
|         """Initialize an empty network with no connections or biases.""" | ||||
|         # Input layer (no actual neurons, just placeholders) | ||||
|         input_layer = [{'type': 'input', 'id': i} for i in range(self.input_size)] | ||||
| 
 | ||||
|         # Output layer with no connections and zero bias | ||||
|         output_layer = [] | ||||
|         for i in range(self.output_size): | ||||
|             neuron = { | ||||
|                 'type': 'output', | ||||
|                 'id': f'out_{i}', | ||||
|                 'bias': 0.0, | ||||
|                 'connections': []  # Empty connections list | ||||
|             } | ||||
|             output_layer.append(neuron) | ||||
| 
 | ||||
|         self.layers = [input_layer, output_layer] | ||||
| 
 | ||||
|     def _remove_duplicate_connections(self): | ||||
|         """Remove duplicate connections and keep only the last weight for each unique connection.""" | ||||
|         for layer in self.layers[1:]:  # Skip input layer | ||||
|             for neuron in layer: | ||||
|                 if 'connections' not in neuron: | ||||
|                     continue | ||||
| 
 | ||||
|                 # Use a dictionary to track unique connections by (source_layer, source_neuron) | ||||
|                 unique_connections = {} | ||||
| 
 | ||||
|                 for source_layer, source_neuron, weight in neuron['connections']: | ||||
|                     connection_key = (source_layer, source_neuron) | ||||
|                     # Keep the last weight encountered for this connection | ||||
|                     unique_connections[connection_key] = weight | ||||
| 
 | ||||
|                 # Rebuild connections list without duplicates | ||||
|                 neuron['connections'] = [ | ||||
|                     (source_layer, source_neuron, weight) | ||||
|                     for (source_layer, source_neuron), weight in unique_connections.items() | ||||
|                 ] | ||||
| 
 | ||||
|     def _connection_exists(self, target_neuron, source_layer_idx, source_neuron_idx): | ||||
|         """Check if a connection already exists between two neurons.""" | ||||
|         if 'connections' not in target_neuron: | ||||
|             return False | ||||
| 
 | ||||
|         for source_layer, source_neuron, weight in target_neuron['connections']: | ||||
|             if source_layer == source_layer_idx and source_neuron == source_neuron_idx: | ||||
|                 return True | ||||
|         return False | ||||
| 
 | ||||
|     def forward(self, inputs): | ||||
|         """ | ||||
|         Forward pass through the network. | ||||
| 
 | ||||
|         :param inputs: List or array of input values | ||||
|         :return: List of output values | ||||
|         """ | ||||
|         if len(inputs) != self.input_size: | ||||
|             raise ValueError(f"Expected {self.input_size} inputs, got {len(inputs)}") | ||||
| 
 | ||||
|         # Store activations for each layer | ||||
|         activations = [inputs]  # Input layer activations | ||||
| 
 | ||||
|         # Process each subsequent layer | ||||
|         for layer_idx in range(1, len(self.layers)): | ||||
|             layer_activations = [] | ||||
| 
 | ||||
|             for neuron in self.layers[layer_idx]: | ||||
|                 if neuron['type'] == 'input': | ||||
|                     continue  # Skip input neurons in hidden layers | ||||
| 
 | ||||
|                 # Calculate weighted sum of inputs | ||||
|                 weighted_sum = 0.0  # Start with 0 instead of bias | ||||
| 
 | ||||
|                 # Only add bias if neuron has connections | ||||
|                 if 'connections' in neuron and len(neuron['connections']) > 0: | ||||
|                     weighted_sum = neuron['bias'] | ||||
| 
 | ||||
|                     for source_layer, source_neuron, weight in neuron['connections']: | ||||
|                         if source_layer < len(activations): | ||||
|                             if source_neuron < len(activations[source_layer]): | ||||
|                                 weighted_sum += activations[source_layer][source_neuron] * weight | ||||
| 
 | ||||
|                 # Apply activation function (tanh for bounded output) | ||||
|                 # If no connections and no bias applied, this will be tanh(0) = 0 | ||||
|                 activation = np.tanh(weighted_sum) | ||||
|                 layer_activations.append(activation) | ||||
| 
 | ||||
|             activations.append(layer_activations) | ||||
| 
 | ||||
|         return activations[-1]  # Return output layer activations | ||||
| 
 | ||||
|     def mutate(self, mutation_rate=0.1): | ||||
|         """ | ||||
|         Create a mutated copy of this network. | ||||
| 
 | ||||
|         :param mutation_rate: Base probability multiplied by specific mutation weights | ||||
|         :return: New mutated FlexibleNeuralNetwork instance | ||||
|         """ | ||||
|         mutated = deepcopy(self) | ||||
| 
 | ||||
|         # Weighted mutations (probability = mutation_rate * weight) | ||||
|         # Higher weights = more likely to occur | ||||
|         mutations = [ | ||||
|             (mutated._mutate_weights, 5.0),  # Most common - fine-tune existing | ||||
|             (mutated._mutate_biases, 3.0),  # Common - adjust neuron thresholds | ||||
|             (mutated._add_connection, 1.5),  # Moderate - grow connectivity | ||||
|             (mutated._remove_connection, 0.8),  # Less common - reduce connectivity | ||||
|             (mutated._add_neuron, 0.3),  # Rare - structural growth | ||||
|             (mutated._remove_neuron, 0.1),  # Very rare - structural reduction | ||||
|             (mutated._add_layer, 0.05),  # New: create a new layer (very rare) | ||||
|         ] | ||||
| 
 | ||||
|         # Apply weighted random mutations | ||||
|         for mutation_func, weight in mutations: | ||||
|             if random.random() < (mutation_rate * weight): | ||||
|                 mutation_func() | ||||
| 
 | ||||
|         # Clean up any duplicate connections that might have been created | ||||
|         mutated._remove_duplicate_connections() | ||||
| 
 | ||||
|         # Ensure the network maintains basic connectivity | ||||
|         mutated._ensure_network_connectivity() | ||||
| 
 | ||||
|         mutated.network_cost = mutated.calculate_network_cost() | ||||
| 
 | ||||
|         return mutated | ||||
| 
 | ||||
|     def _mutate_weights(self): | ||||
|         """Slightly modify existing connection weights.""" | ||||
|         for layer in self.layers[1:]:  # Skip input layer | ||||
|             for neuron in layer: | ||||
|                 if 'connections' in neuron: | ||||
|                     for i in range(len(neuron['connections'])): | ||||
|                         if random.random() < 0.3:  # 30% chance to mutate each weight | ||||
|                             source_layer, source_neuron, weight = neuron['connections'][i] | ||||
|                             # Add small random change | ||||
|                             new_weight = weight + random.uniform(-0.5, 0.5) | ||||
|                             neuron['connections'][i] = (source_layer, source_neuron, new_weight) | ||||
| 
 | ||||
|     def _mutate_biases(self): | ||||
|         """Slightly modify neuron biases.""" | ||||
|         for layer in self.layers[1:]:  # Skip input layer | ||||
|             for neuron in layer: | ||||
|                 if 'bias' in neuron and random.random() < 0.3: | ||||
|                     neuron['bias'] += random.uniform(-0.5, 0.5) | ||||
| 
 | ||||
|     def _add_connection(self): | ||||
|         """Add a new random connection.""" | ||||
|         if len(self.layers) < 2: | ||||
|             return | ||||
| 
 | ||||
|         # Find layers with neurons | ||||
|         valid_target_layers = [] | ||||
|         for i in range(1, len(self.layers)): | ||||
|             if len(self.layers[i]) > 0: | ||||
|                 valid_target_layers.append(i) | ||||
| 
 | ||||
|         if not valid_target_layers: | ||||
|             return | ||||
| 
 | ||||
|         # Pick a random target neuron (not in input layer) | ||||
|         target_layer_idx = random.choice(valid_target_layers) | ||||
|         target_neuron_idx = random.randint(0, len(self.layers[target_layer_idx]) - 1) | ||||
|         target_neuron = self.layers[target_layer_idx][target_neuron_idx] | ||||
| 
 | ||||
|         if 'connections' not in target_neuron: | ||||
|             return | ||||
| 
 | ||||
|         # Find valid source layers (must have neurons and be before target) | ||||
|         valid_source_layers = [] | ||||
|         for i in range(target_layer_idx): | ||||
|             if len(self.layers[i]) > 0: | ||||
|                 valid_source_layers.append(i) | ||||
| 
 | ||||
|         if not valid_source_layers: | ||||
|             return | ||||
| 
 | ||||
|         # Pick a random source (from any previous layer with neurons) | ||||
|         source_layer_idx = random.choice(valid_source_layers) | ||||
|         source_neuron_idx = random.randint(0, len(self.layers[source_layer_idx]) - 1) | ||||
| 
 | ||||
|         # Check if connection already exists using the helper method | ||||
|         if self._connection_exists(target_neuron, source_layer_idx, source_neuron_idx): | ||||
|             return  # Connection already exists, don't add duplicate | ||||
| 
 | ||||
|         # Add new connection | ||||
|         new_weight = random.uniform(-2, 2) | ||||
|         target_neuron['connections'].append((source_layer_idx, source_neuron_idx, new_weight)) | ||||
| 
 | ||||
|     def _remove_connection(self): | ||||
|         """Remove a random connection.""" | ||||
|         for layer in self.layers[1:]: | ||||
|             for neuron in layer: | ||||
|                 if 'connections' in neuron and len(neuron['connections']) > 1: | ||||
|                     if random.random() < 0.1:  # 10% chance to remove a connection | ||||
|                         neuron['connections'].pop(random.randint(0, len(neuron['connections']) - 1)) | ||||
| 
 | ||||
|     def _add_neuron(self): | ||||
|         """Add a new neuron to a random hidden layer or create a new hidden layer.""" | ||||
|         if len(self.layers) == 2:  # Only input and output layers | ||||
|             # Create a new hidden layer | ||||
|             hidden_neuron = { | ||||
|                 'type': 'hidden', | ||||
|                 'id': f'hidden_{random.randint(1000, 9999)}', | ||||
|                 'bias': random.uniform(-1, 1), | ||||
|                 'connections': [] | ||||
|             } | ||||
| 
 | ||||
|             # Connect to some input neurons (avoid duplicates) | ||||
|             for i in range(self.input_size): | ||||
|                 if random.random() < 0.7:  # 70% chance to connect to each input | ||||
|                     if not self._connection_exists(hidden_neuron, 0, i): | ||||
|                         hidden_neuron['connections'].append((0, i, random.uniform(-2, 2))) | ||||
| 
 | ||||
|             # Insert hidden layer | ||||
|             self.layers.insert(1, [hidden_neuron]) | ||||
| 
 | ||||
|             # Update output layer connections to potentially use new hidden neuron | ||||
|             for neuron in self.layers[-1]:  # Output layer (now at index 2) | ||||
|                 if random.random() < 0.5:  # 50% chance to connect to new hidden neuron | ||||
|                     if not self._connection_exists(neuron, 1, 0): | ||||
|                         neuron['connections'].append((1, 0, random.uniform(-2, 2))) | ||||
| 
 | ||||
|         else: | ||||
|             # Add neuron to existing hidden layer | ||||
|             # Find hidden layers that exist | ||||
|             hidden_layer_indices = [] | ||||
|             for i in range(1, len(self.layers) - 1): | ||||
|                 if i < len(self.layers):  # Safety check | ||||
|                     hidden_layer_indices.append(i) | ||||
| 
 | ||||
|             if not hidden_layer_indices: | ||||
|                 return | ||||
| 
 | ||||
|             hidden_layer_idx = random.choice(hidden_layer_indices) | ||||
|             new_neuron = { | ||||
|                 'type': 'hidden', | ||||
|                 'id': f'hidden_{random.randint(1000, 9999)}', | ||||
|                 'bias': random.uniform(-1, 1), | ||||
|                 'connections': [] | ||||
|             } | ||||
| 
 | ||||
|             # Connect to some neurons from previous layers (avoid duplicates) | ||||
|             for layer_idx in range(hidden_layer_idx): | ||||
|                 if len(self.layers[layer_idx]) > 0:  # Only if layer has neurons | ||||
|                     for neuron_idx in range(len(self.layers[layer_idx])): | ||||
|                         if random.random() < 0.3:  # 30% chance to connect | ||||
|                             if not self._connection_exists(new_neuron, layer_idx, neuron_idx): | ||||
|                                 new_neuron['connections'].append((layer_idx, neuron_idx, random.uniform(-2, 2))) | ||||
| 
 | ||||
|             self.layers[hidden_layer_idx].append(new_neuron) | ||||
| 
 | ||||
|             # Update connections from later layers to potentially connect to this new neuron | ||||
|             new_neuron_idx = len(self.layers[hidden_layer_idx]) - 1 | ||||
|             for later_layer_idx in range(hidden_layer_idx + 1, len(self.layers)): | ||||
|                 if len(self.layers[later_layer_idx]) > 0:  # Only if layer has neurons | ||||
|                     for neuron in self.layers[later_layer_idx]: | ||||
|                         if random.random() < 0.2:  # 20% chance to connect to new neuron | ||||
|                             if not self._connection_exists(neuron, hidden_layer_idx, new_neuron_idx): | ||||
|                                 neuron['connections'].append((hidden_layer_idx, new_neuron_idx, random.uniform(-2, 2))) | ||||
| 
 | ||||
|     def _remove_neuron(self): | ||||
|         """Remove a random neuron from hidden layers.""" | ||||
|         if len(self.layers) <= 2:  # No hidden layers | ||||
|             return | ||||
| 
 | ||||
|         # Find hidden layers that have neurons | ||||
|         valid_hidden_layers = [] | ||||
|         for layer_idx in range(1, len(self.layers) - 1):  # Only hidden layers | ||||
|             if len(self.layers[layer_idx]) > 0: | ||||
|                 valid_hidden_layers.append(layer_idx) | ||||
| 
 | ||||
|         if not valid_hidden_layers: | ||||
|             return | ||||
| 
 | ||||
|         # Pick a random hidden layer with neurons | ||||
|         layer_idx = random.choice(valid_hidden_layers) | ||||
|         neuron_idx = random.randint(0, len(self.layers[layer_idx]) - 1) | ||||
| 
 | ||||
|         # Remove the neuron | ||||
|         self.layers[layer_idx].pop(neuron_idx) | ||||
| 
 | ||||
|         # Remove connections to this neuron from later layers | ||||
|         for later_layer_idx in range(layer_idx + 1, len(self.layers)): | ||||
|             for neuron in self.layers[later_layer_idx]: | ||||
|                 if 'connections' in neuron: | ||||
|                     neuron['connections'] = [ | ||||
|                         (src_layer, src_neuron, weight) | ||||
|                         for src_layer, src_neuron, weight in neuron['connections'] | ||||
|                         if not (src_layer == layer_idx and src_neuron == neuron_idx) | ||||
|                     ] | ||||
| 
 | ||||
|         # Adjust neuron indices for remaining neurons in the same layer | ||||
|         for later_layer_idx in range(layer_idx + 1, len(self.layers)): | ||||
|             for neuron in self.layers[later_layer_idx]: | ||||
|                 if 'connections' in neuron: | ||||
|                     adjusted_connections = [] | ||||
|                     for src_layer, src_neuron, weight in neuron['connections']: | ||||
|                         if src_layer == layer_idx and src_neuron > neuron_idx: | ||||
|                             # Adjust index down by 1 since we removed a neuron | ||||
|                             adjusted_connections.append((src_layer, src_neuron - 1, weight)) | ||||
|                         else: | ||||
|                             adjusted_connections.append((src_layer, src_neuron, weight)) | ||||
|                     neuron['connections'] = adjusted_connections | ||||
| 
 | ||||
|         # Remove empty hidden layers to keep network clean | ||||
|         if len(self.layers[layer_idx]) == 0: | ||||
|             self.layers.pop(layer_idx) | ||||
| 
 | ||||
|             # Adjust all layer indices in connections that reference layers after the removed one | ||||
|             for layer in self.layers: | ||||
|                 for neuron in layer: | ||||
|                     if 'connections' in neuron: | ||||
|                         adjusted_connections = [] | ||||
|                         for src_layer, src_neuron, weight in neuron['connections']: | ||||
|                             if src_layer > layer_idx: | ||||
|                                 adjusted_connections.append((src_layer - 1, src_neuron, weight)) | ||||
|                             else: | ||||
|                                 adjusted_connections.append((src_layer, src_neuron, weight)) | ||||
|                         neuron['connections'] = adjusted_connections | ||||
| 
 | ||||
|     def _add_layer(self): | ||||
|         """Add a new hidden layer at a random position with at least one neuron.""" | ||||
|         if len(self.layers) < 2: | ||||
|             return  # Need at least input and output layers | ||||
| 
 | ||||
|         # Choose a position between input and output layers | ||||
|         insert_idx = random.randint(1, len(self.layers) - 1) | ||||
|         # Create a new hidden neuron | ||||
|         new_neuron = { | ||||
|             'type': 'hidden', | ||||
|             'id': f'hidden_{random.randint(1000, 9999)}', | ||||
|             'bias': random.uniform(-1, 1), | ||||
|             'connections': [] | ||||
|         } | ||||
|         # Connect to all neurons in the previous layer | ||||
|         for prev_idx in range(len(self.layers[insert_idx - 1])): | ||||
|             if random.random() < 0.5: | ||||
|                 new_neuron['connections'].append((insert_idx - 1, prev_idx, random.uniform(-2, 2))) | ||||
|         # Insert the new layer | ||||
|         self.layers.insert(insert_idx, [new_neuron]) | ||||
|         # Connect neurons in the next layer to the new neuron | ||||
|         if insert_idx + 1 < len(self.layers): | ||||
|             for neuron in self.layers[insert_idx + 1]: | ||||
|                 if 'connections' in neuron and random.random() < 0.5: | ||||
|                     neuron['connections'].append((insert_idx, 0, random.uniform(-2, 2))) | ||||
| 
 | ||||
|     def _ensure_network_connectivity(self): | ||||
|         """Ensure the network maintains basic connectivity from inputs to outputs.""" | ||||
|         # Check if output neurons have any connections | ||||
|         output_layer = self.layers[-1] | ||||
| 
 | ||||
|         for i, output_neuron in enumerate(output_layer): | ||||
|             if 'connections' not in output_neuron or len(output_neuron['connections']) == 0: | ||||
|                 # Output neuron has no connections - reconnect to input layer | ||||
|                 for j in range(self.input_size): | ||||
|                     if not self._connection_exists(output_neuron, 0, j): | ||||
|                         output_neuron['connections'].append((0, j, random.uniform(-2, 2))) | ||||
|                         break  # Add at least one connection | ||||
| 
 | ||||
|         # Ensure at least one path exists from input to output | ||||
|         if len(self.layers) > 2:  # Has hidden layers | ||||
|             # Check if any hidden neurons are connected to inputs | ||||
|             has_input_connection = False | ||||
|             for layer_idx in range(1, len(self.layers) - 1):  # Hidden layers | ||||
|                 for neuron in self.layers[layer_idx]: | ||||
|                     if 'connections' in neuron: | ||||
|                         for src_layer, src_neuron, weight in neuron['connections']: | ||||
|                             if src_layer == 0:  # Connected to input | ||||
|                                 has_input_connection = True | ||||
|                                 break | ||||
|                     if has_input_connection: | ||||
|                         break | ||||
|                 if has_input_connection: | ||||
|                     break | ||||
| 
 | ||||
|             # If no hidden neuron connects to input, create one | ||||
|             if not has_input_connection and len(self.layers) > 2: | ||||
|                 first_hidden_layer = self.layers[1] | ||||
|                 if len(first_hidden_layer) > 0: | ||||
|                     first_neuron = first_hidden_layer[0] | ||||
|                     if 'connections' in first_neuron: | ||||
|                         # Add connection to first input | ||||
|                         if not self._connection_exists(first_neuron, 0, 0): | ||||
|                             first_neuron['connections'].append((0, 0, random.uniform(-2, 2))) | ||||
| 
 | ||||
|     def get_structure_info(self): | ||||
|         """Return information about the network structure.""" | ||||
|         info = { | ||||
|             'total_layers': len(self.layers), | ||||
|             'layer_sizes': [len(layer) for layer in self.layers], | ||||
|             'total_connections': 0, | ||||
|             'total_neurons': sum(len(layer) for layer in self.layers), | ||||
|             'network_cost': self.network_cost | ||||
|         } | ||||
| 
 | ||||
|         for layer in self.layers[1:]: | ||||
|             for neuron in layer: | ||||
|                 if 'connections' in neuron: | ||||
|                     info['total_connections'] += len(neuron['connections']) | ||||
| 
 | ||||
|         return info | ||||
| 
 | ||||
|     def calculate_network_cost(self): | ||||
|         """ | ||||
|         Estimate the computational cost of the network. | ||||
|         Cost is defined as the total number of connections plus the number of neurons | ||||
|         (i.e., total multiply-accumulate operations and activations per forward pass). | ||||
|         """ | ||||
|         total_connections = 0 | ||||
|         total_neurons = 0 | ||||
|         for layer in self.layers[1:]:  # Skip input layer (no computation) | ||||
|             for neuron in layer: | ||||
|                 total_neurons += 1 | ||||
|                 if 'connections' in neuron: | ||||
|                     total_connections += len(neuron['connections']) | ||||
|         return total_connections + total_neurons | ||||
| 
 | ||||
| 
 | ||||
| class CellBrain(BehavioralModel): | ||||
|     """ | ||||
|     Enhanced CellBrain using a flexible neural network with input normalization. | ||||
|  | ||||
| @ -1,467 +0,0 @@ | ||||
| import numpy as np | ||||
| import random | ||||
| from copy import deepcopy | ||||
| 
 | ||||
| 
 | ||||
| class FlexibleNeuralNetwork: | ||||
|     """ | ||||
|     A flexible neural network that can mutate its structure and weights. | ||||
|     Supports variable topology with cross-layer connections. | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, input_size=2, output_size=2, empty_start=True): | ||||
|         self.input_size = input_size | ||||
|         self.output_size = output_size | ||||
| 
 | ||||
|         # Network structure: list of layers, each layer is a list of neurons | ||||
|         # Each neuron is represented by its connections and bias | ||||
|         self.layers = [] | ||||
| 
 | ||||
|         # Initialize network based on empty_start parameter | ||||
|         if empty_start: | ||||
|             self._initialize_empty_network() | ||||
|         else: | ||||
|             self._initialize_basic_network() | ||||
| 
 | ||||
|         self.network_cost = self.calculate_network_cost() | ||||
| 
 | ||||
|     def _initialize_basic_network(self): | ||||
|         """Initialize a basic network with input->output connections only.""" | ||||
|         # Input layer (no actual neurons, just placeholders) | ||||
|         input_layer = [{'type': 'input', 'id': i} for i in range(self.input_size)] | ||||
| 
 | ||||
|         # Output layer with connections to all inputs | ||||
|         output_layer = [] | ||||
|         for i in range(self.output_size): | ||||
|             neuron = { | ||||
|                 'type': 'output', | ||||
|                 'id': f'out_{i}', | ||||
|                 'bias': random.uniform(-1, 1), | ||||
|                 'connections': []  # List of (source_layer, source_neuron, weight) | ||||
|             } | ||||
| 
 | ||||
|             # Connect to all input neurons | ||||
|             for j in range(self.input_size): | ||||
|                 neuron['connections'].append((0, j, random.uniform(-2, 2))) | ||||
| 
 | ||||
|             output_layer.append(neuron) | ||||
| 
 | ||||
|         self.layers = [input_layer, output_layer] | ||||
| 
 | ||||
|     def _initialize_empty_network(self): | ||||
|         """Initialize an empty network with no connections or biases.""" | ||||
|         # Input layer (no actual neurons, just placeholders) | ||||
|         input_layer = [{'type': 'input', 'id': i} for i in range(self.input_size)] | ||||
| 
 | ||||
|         # Output layer with no connections and zero bias | ||||
|         output_layer = [] | ||||
|         for i in range(self.output_size): | ||||
|             neuron = { | ||||
|                 'type': 'output', | ||||
|                 'id': f'out_{i}', | ||||
|                 'bias': 0.0, | ||||
|                 'connections': []  # Empty connections list | ||||
|             } | ||||
|             output_layer.append(neuron) | ||||
| 
 | ||||
|         self.layers = [input_layer, output_layer] | ||||
| 
 | ||||
|     def _remove_duplicate_connections(self): | ||||
|         """Remove duplicate connections and keep only the last weight for each unique connection.""" | ||||
|         for layer in self.layers[1:]:  # Skip input layer | ||||
|             for neuron in layer: | ||||
|                 if 'connections' not in neuron: | ||||
|                     continue | ||||
| 
 | ||||
|                 # Use a dictionary to track unique connections by (source_layer, source_neuron) | ||||
|                 unique_connections = {} | ||||
| 
 | ||||
|                 for source_layer, source_neuron, weight in neuron['connections']: | ||||
|                     connection_key = (source_layer, source_neuron) | ||||
|                     # Keep the last weight encountered for this connection | ||||
|                     unique_connections[connection_key] = weight | ||||
| 
 | ||||
|                 # Rebuild connections list without duplicates | ||||
|                 neuron['connections'] = [ | ||||
|                     (source_layer, source_neuron, weight) | ||||
|                     for (source_layer, source_neuron), weight in unique_connections.items() | ||||
|                 ] | ||||
| 
 | ||||
|     def _connection_exists(self, target_neuron, source_layer_idx, source_neuron_idx): | ||||
|         """Check if a connection already exists between two neurons.""" | ||||
|         if 'connections' not in target_neuron: | ||||
|             return False | ||||
| 
 | ||||
|         for source_layer, source_neuron, weight in target_neuron['connections']: | ||||
|             if source_layer == source_layer_idx and source_neuron == source_neuron_idx: | ||||
|                 return True | ||||
|         return False | ||||
| 
 | ||||
|     def forward(self, inputs): | ||||
|         """ | ||||
|         Forward pass through the network. | ||||
| 
 | ||||
|         :param inputs: List or array of input values | ||||
|         :return: List of output values | ||||
|         """ | ||||
|         if len(inputs) != self.input_size: | ||||
|             raise ValueError(f"Expected {self.input_size} inputs, got {len(inputs)}") | ||||
| 
 | ||||
|         # Store activations for each layer | ||||
|         activations = [inputs]  # Input layer activations | ||||
| 
 | ||||
|         # Process each subsequent layer | ||||
|         for layer_idx in range(1, len(self.layers)): | ||||
|             layer_activations = [] | ||||
| 
 | ||||
|             for neuron in self.layers[layer_idx]: | ||||
|                 if neuron['type'] == 'input': | ||||
|                     continue  # Skip input neurons in hidden layers | ||||
| 
 | ||||
|                 # Calculate weighted sum of inputs | ||||
|                 weighted_sum = 0.0  # Start with 0 instead of bias | ||||
| 
 | ||||
|                 # Only add bias if neuron has connections | ||||
|                 if 'connections' in neuron and len(neuron['connections']) > 0: | ||||
|                     weighted_sum = neuron['bias'] | ||||
| 
 | ||||
|                     for source_layer, source_neuron, weight in neuron['connections']: | ||||
|                         if source_layer < len(activations): | ||||
|                             if source_neuron < len(activations[source_layer]): | ||||
|                                 weighted_sum += activations[source_layer][source_neuron] * weight | ||||
| 
 | ||||
|                 # Apply activation function (tanh for bounded output) | ||||
|                 # If no connections and no bias applied, this will be tanh(0) = 0 | ||||
|                 activation = np.tanh(weighted_sum) | ||||
|                 layer_activations.append(activation) | ||||
| 
 | ||||
|             activations.append(layer_activations) | ||||
| 
 | ||||
|         return activations[-1]  # Return output layer activations | ||||
| 
 | ||||
|     def mutate(self, mutation_rate=0.1): | ||||
|         """ | ||||
|         Create a mutated copy of this network. | ||||
| 
 | ||||
|         :param mutation_rate: Base probability multiplied by specific mutation weights | ||||
|         :return: New mutated FlexibleNeuralNetwork instance | ||||
|         """ | ||||
|         mutated = deepcopy(self) | ||||
| 
 | ||||
|         # Weighted mutations (probability = mutation_rate * weight) | ||||
|         # Higher weights = more likely to occur | ||||
|         mutations = [ | ||||
|             (mutated._mutate_weights, 5.0),  # Most common - fine-tune existing | ||||
|             (mutated._mutate_biases, 3.0),  # Common - adjust neuron thresholds | ||||
|             (mutated._add_connection, 1.5),  # Moderate - grow connectivity | ||||
|             (mutated._remove_connection, 0.8),  # Less common - reduce connectivity | ||||
|             (mutated._add_neuron, 0.3),  # Rare - structural growth | ||||
|             (mutated._remove_neuron, 0.1),  # Very rare - structural reduction | ||||
|             (mutated._add_layer, 0.05),  # New: create a new layer (very rare) | ||||
|         ] | ||||
| 
 | ||||
|         # Apply weighted random mutations | ||||
|         for mutation_func, weight in mutations: | ||||
|             if random.random() < (mutation_rate * weight): | ||||
|                 mutation_func() | ||||
| 
 | ||||
|         # Clean up any duplicate connections that might have been created | ||||
|         mutated._remove_duplicate_connections() | ||||
| 
 | ||||
|         # Ensure the network maintains basic connectivity | ||||
|         mutated._ensure_network_connectivity() | ||||
| 
 | ||||
|         mutated.network_cost = mutated.calculate_network_cost() | ||||
| 
 | ||||
|         return mutated | ||||
| 
 | ||||
|     def _mutate_weights(self): | ||||
|         """Slightly modify existing connection weights.""" | ||||
|         for layer in self.layers[1:]:  # Skip input layer | ||||
|             for neuron in layer: | ||||
|                 if 'connections' in neuron: | ||||
|                     for i in range(len(neuron['connections'])): | ||||
|                         if random.random() < 0.3:  # 30% chance to mutate each weight | ||||
|                             source_layer, source_neuron, weight = neuron['connections'][i] | ||||
|                             # Add small random change | ||||
|                             new_weight = weight + random.uniform(-0.5, 0.5) | ||||
|                             neuron['connections'][i] = (source_layer, source_neuron, new_weight) | ||||
| 
 | ||||
|     def _mutate_biases(self): | ||||
|         """Slightly modify neuron biases.""" | ||||
|         for layer in self.layers[1:]:  # Skip input layer | ||||
|             for neuron in layer: | ||||
|                 if 'bias' in neuron and random.random() < 0.3: | ||||
|                     neuron['bias'] += random.uniform(-0.5, 0.5) | ||||
| 
 | ||||
|     def _add_connection(self): | ||||
|         """Add a new random connection.""" | ||||
|         if len(self.layers) < 2: | ||||
|             return | ||||
| 
 | ||||
|         # Find layers with neurons | ||||
|         valid_target_layers = [] | ||||
|         for i in range(1, len(self.layers)): | ||||
|             if len(self.layers[i]) > 0: | ||||
|                 valid_target_layers.append(i) | ||||
| 
 | ||||
|         if not valid_target_layers: | ||||
|             return | ||||
| 
 | ||||
|         # Pick a random target neuron (not in input layer) | ||||
|         target_layer_idx = random.choice(valid_target_layers) | ||||
|         target_neuron_idx = random.randint(0, len(self.layers[target_layer_idx]) - 1) | ||||
|         target_neuron = self.layers[target_layer_idx][target_neuron_idx] | ||||
| 
 | ||||
|         if 'connections' not in target_neuron: | ||||
|             return | ||||
| 
 | ||||
|         # Find valid source layers (must have neurons and be before target) | ||||
|         valid_source_layers = [] | ||||
|         for i in range(target_layer_idx): | ||||
|             if len(self.layers[i]) > 0: | ||||
|                 valid_source_layers.append(i) | ||||
| 
 | ||||
|         if not valid_source_layers: | ||||
|             return | ||||
| 
 | ||||
|         # Pick a random source (from any previous layer with neurons) | ||||
|         source_layer_idx = random.choice(valid_source_layers) | ||||
|         source_neuron_idx = random.randint(0, len(self.layers[source_layer_idx]) - 1) | ||||
| 
 | ||||
|         # Check if connection already exists using the helper method | ||||
|         if self._connection_exists(target_neuron, source_layer_idx, source_neuron_idx): | ||||
|             return  # Connection already exists, don't add duplicate | ||||
| 
 | ||||
|         # Add new connection | ||||
|         new_weight = random.uniform(-2, 2) | ||||
|         target_neuron['connections'].append((source_layer_idx, source_neuron_idx, new_weight)) | ||||
| 
 | ||||
|     def _remove_connection(self): | ||||
|         """Remove a random connection.""" | ||||
|         for layer in self.layers[1:]: | ||||
|             for neuron in layer: | ||||
|                 if 'connections' in neuron and len(neuron['connections']) > 1: | ||||
|                     if random.random() < 0.1:  # 10% chance to remove a connection | ||||
|                         neuron['connections'].pop(random.randint(0, len(neuron['connections']) - 1)) | ||||
| 
 | ||||
|     def _add_neuron(self): | ||||
|         """Add a new neuron to a random hidden layer or create a new hidden layer.""" | ||||
|         if len(self.layers) == 2:  # Only input and output layers | ||||
|             # Create a new hidden layer | ||||
|             hidden_neuron = { | ||||
|                 'type': 'hidden', | ||||
|                 'id': f'hidden_{random.randint(1000, 9999)}', | ||||
|                 'bias': random.uniform(-1, 1), | ||||
|                 'connections': [] | ||||
|             } | ||||
| 
 | ||||
|             # Connect to some input neurons (avoid duplicates) | ||||
|             for i in range(self.input_size): | ||||
|                 if random.random() < 0.7:  # 70% chance to connect to each input | ||||
|                     if not self._connection_exists(hidden_neuron, 0, i): | ||||
|                         hidden_neuron['connections'].append((0, i, random.uniform(-2, 2))) | ||||
| 
 | ||||
|             # Insert hidden layer | ||||
|             self.layers.insert(1, [hidden_neuron]) | ||||
| 
 | ||||
|             # Update output layer connections to potentially use new hidden neuron | ||||
|             for neuron in self.layers[-1]:  # Output layer (now at index 2) | ||||
|                 if random.random() < 0.5:  # 50% chance to connect to new hidden neuron | ||||
|                     if not self._connection_exists(neuron, 1, 0): | ||||
|                         neuron['connections'].append((1, 0, random.uniform(-2, 2))) | ||||
| 
 | ||||
|         else: | ||||
|             # Add neuron to existing hidden layer | ||||
|             # Find hidden layers that exist | ||||
|             hidden_layer_indices = [] | ||||
|             for i in range(1, len(self.layers) - 1): | ||||
|                 if i < len(self.layers):  # Safety check | ||||
|                     hidden_layer_indices.append(i) | ||||
| 
 | ||||
|             if not hidden_layer_indices: | ||||
|                 return | ||||
| 
 | ||||
|             hidden_layer_idx = random.choice(hidden_layer_indices) | ||||
|             new_neuron = { | ||||
|                 'type': 'hidden', | ||||
|                 'id': f'hidden_{random.randint(1000, 9999)}', | ||||
|                 'bias': random.uniform(-1, 1), | ||||
|                 'connections': [] | ||||
|             } | ||||
| 
 | ||||
|             # Connect to some neurons from previous layers (avoid duplicates) | ||||
|             for layer_idx in range(hidden_layer_idx): | ||||
|                 if len(self.layers[layer_idx]) > 0:  # Only if layer has neurons | ||||
|                     for neuron_idx in range(len(self.layers[layer_idx])): | ||||
|                         if random.random() < 0.3:  # 30% chance to connect | ||||
|                             if not self._connection_exists(new_neuron, layer_idx, neuron_idx): | ||||
|                                 new_neuron['connections'].append((layer_idx, neuron_idx, random.uniform(-2, 2))) | ||||
| 
 | ||||
|             self.layers[hidden_layer_idx].append(new_neuron) | ||||
| 
 | ||||
|             # Update connections from later layers to potentially connect to this new neuron | ||||
|             new_neuron_idx = len(self.layers[hidden_layer_idx]) - 1 | ||||
|             for later_layer_idx in range(hidden_layer_idx + 1, len(self.layers)): | ||||
|                 if len(self.layers[later_layer_idx]) > 0:  # Only if layer has neurons | ||||
|                     for neuron in self.layers[later_layer_idx]: | ||||
|                         if random.random() < 0.2:  # 20% chance to connect to new neuron | ||||
|                             if not self._connection_exists(neuron, hidden_layer_idx, new_neuron_idx): | ||||
|                                 neuron['connections'].append((hidden_layer_idx, new_neuron_idx, random.uniform(-2, 2))) | ||||
| 
 | ||||
|     def _remove_neuron(self): | ||||
|         """Remove a random neuron from hidden layers.""" | ||||
|         if len(self.layers) <= 2:  # No hidden layers | ||||
|             return | ||||
| 
 | ||||
|         # Find hidden layers that have neurons | ||||
|         valid_hidden_layers = [] | ||||
|         for layer_idx in range(1, len(self.layers) - 1):  # Only hidden layers | ||||
|             if len(self.layers[layer_idx]) > 0: | ||||
|                 valid_hidden_layers.append(layer_idx) | ||||
| 
 | ||||
|         if not valid_hidden_layers: | ||||
|             return | ||||
| 
 | ||||
|         # Pick a random hidden layer with neurons | ||||
|         layer_idx = random.choice(valid_hidden_layers) | ||||
|         neuron_idx = random.randint(0, len(self.layers[layer_idx]) - 1) | ||||
| 
 | ||||
|         # Remove the neuron | ||||
|         self.layers[layer_idx].pop(neuron_idx) | ||||
| 
 | ||||
|         # Remove connections to this neuron from later layers | ||||
|         for later_layer_idx in range(layer_idx + 1, len(self.layers)): | ||||
|             for neuron in self.layers[later_layer_idx]: | ||||
|                 if 'connections' in neuron: | ||||
|                     neuron['connections'] = [ | ||||
|                         (src_layer, src_neuron, weight) | ||||
|                         for src_layer, src_neuron, weight in neuron['connections'] | ||||
|                         if not (src_layer == layer_idx and src_neuron == neuron_idx) | ||||
|                     ] | ||||
| 
 | ||||
|         # Adjust neuron indices for remaining neurons in the same layer | ||||
|         for later_layer_idx in range(layer_idx + 1, len(self.layers)): | ||||
|             for neuron in self.layers[later_layer_idx]: | ||||
|                 if 'connections' in neuron: | ||||
|                     adjusted_connections = [] | ||||
|                     for src_layer, src_neuron, weight in neuron['connections']: | ||||
|                         if src_layer == layer_idx and src_neuron > neuron_idx: | ||||
|                             # Adjust index down by 1 since we removed a neuron | ||||
|                             adjusted_connections.append((src_layer, src_neuron - 1, weight)) | ||||
|                         else: | ||||
|                             adjusted_connections.append((src_layer, src_neuron, weight)) | ||||
|                     neuron['connections'] = adjusted_connections | ||||
| 
 | ||||
|         # Remove empty hidden layers to keep network clean | ||||
|         if len(self.layers[layer_idx]) == 0: | ||||
|             self.layers.pop(layer_idx) | ||||
| 
 | ||||
|             # Adjust all layer indices in connections that reference layers after the removed one | ||||
|             for layer in self.layers: | ||||
|                 for neuron in layer: | ||||
|                     if 'connections' in neuron: | ||||
|                         adjusted_connections = [] | ||||
|                         for src_layer, src_neuron, weight in neuron['connections']: | ||||
|                             if src_layer > layer_idx: | ||||
|                                 adjusted_connections.append((src_layer - 1, src_neuron, weight)) | ||||
|                             else: | ||||
|                                 adjusted_connections.append((src_layer, src_neuron, weight)) | ||||
|                         neuron['connections'] = adjusted_connections | ||||
| 
 | ||||
|     def _add_layer(self): | ||||
|         """Add a new hidden layer at a random position with at least one neuron.""" | ||||
|         if len(self.layers) < 2: | ||||
|             return  # Need at least input and output layers | ||||
| 
 | ||||
|         # Choose a position between input and output layers | ||||
|         insert_idx = random.randint(1, len(self.layers) - 1) | ||||
|         # Create a new hidden neuron | ||||
|         new_neuron = { | ||||
|             'type': 'hidden', | ||||
|             'id': f'hidden_{random.randint(1000, 9999)}', | ||||
|             'bias': random.uniform(-1, 1), | ||||
|             'connections': [] | ||||
|         } | ||||
|         # Connect to all neurons in the previous layer | ||||
|         for prev_idx in range(len(self.layers[insert_idx - 1])): | ||||
|             if random.random() < 0.5: | ||||
|                 new_neuron['connections'].append((insert_idx - 1, prev_idx, random.uniform(-2, 2))) | ||||
|         # Insert the new layer | ||||
|         self.layers.insert(insert_idx, [new_neuron]) | ||||
|         # Connect neurons in the next layer to the new neuron | ||||
|         if insert_idx + 1 < len(self.layers): | ||||
|             for neuron in self.layers[insert_idx + 1]: | ||||
|                 if 'connections' in neuron and random.random() < 0.5: | ||||
|                     neuron['connections'].append((insert_idx, 0, random.uniform(-2, 2))) | ||||
| 
 | ||||
|     def _ensure_network_connectivity(self): | ||||
|         """Ensure the network maintains basic connectivity from inputs to outputs.""" | ||||
|         # Check if output neurons have any connections | ||||
|         output_layer = self.layers[-1] | ||||
| 
 | ||||
|         for i, output_neuron in enumerate(output_layer): | ||||
|             if 'connections' not in output_neuron or len(output_neuron['connections']) == 0: | ||||
|                 # Output neuron has no connections - reconnect to input layer | ||||
|                 for j in range(self.input_size): | ||||
|                     if not self._connection_exists(output_neuron, 0, j): | ||||
|                         output_neuron['connections'].append((0, j, random.uniform(-2, 2))) | ||||
|                         break  # Add at least one connection | ||||
| 
 | ||||
|         # Ensure at least one path exists from input to output | ||||
|         if len(self.layers) > 2:  # Has hidden layers | ||||
|             # Check if any hidden neurons are connected to inputs | ||||
|             has_input_connection = False | ||||
|             for layer_idx in range(1, len(self.layers) - 1):  # Hidden layers | ||||
|                 for neuron in self.layers[layer_idx]: | ||||
|                     if 'connections' in neuron: | ||||
|                         for src_layer, src_neuron, weight in neuron['connections']: | ||||
|                             if src_layer == 0:  # Connected to input | ||||
|                                 has_input_connection = True | ||||
|                                 break | ||||
|                     if has_input_connection: | ||||
|                         break | ||||
|                 if has_input_connection: | ||||
|                     break | ||||
| 
 | ||||
|             # If no hidden neuron connects to input, create one | ||||
|             if not has_input_connection and len(self.layers) > 2: | ||||
|                 first_hidden_layer = self.layers[1] | ||||
|                 if len(first_hidden_layer) > 0: | ||||
|                     first_neuron = first_hidden_layer[0] | ||||
|                     if 'connections' in first_neuron: | ||||
|                         # Add connection to first input | ||||
|                         if not self._connection_exists(first_neuron, 0, 0): | ||||
|                             first_neuron['connections'].append((0, 0, random.uniform(-2, 2))) | ||||
| 
 | ||||
|     def get_structure_info(self): | ||||
|         """Return information about the network structure.""" | ||||
|         info = { | ||||
|             'total_layers': len(self.layers), | ||||
|             'layer_sizes': [len(layer) for layer in self.layers], | ||||
|             'total_connections': 0, | ||||
|             'total_neurons': sum(len(layer) for layer in self.layers), | ||||
|             'network_cost': self.network_cost | ||||
|         } | ||||
| 
 | ||||
|         for layer in self.layers[1:]: | ||||
|             for neuron in layer: | ||||
|                 if 'connections' in neuron: | ||||
|                     info['total_connections'] += len(neuron['connections']) | ||||
| 
 | ||||
|         return info | ||||
| 
 | ||||
|     def calculate_network_cost(self): | ||||
|         """ | ||||
|         Estimate the computational cost of the network. | ||||
|         Cost is defined as the total number of connections plus the number of neurons | ||||
|         (i.e., total multiply-accumulate operations and activations per forward pass). | ||||
|         """ | ||||
|         total_connections = 0 | ||||
|         total_neurons = 0 | ||||
|         for layer in self.layers[1:]:  # Skip input layer (no computation) | ||||
|             for neuron in layer: | ||||
|                 total_neurons += 1 | ||||
|                 if 'connections' in neuron: | ||||
|                     total_connections += len(neuron['connections']) | ||||
|         return total_connections + total_neurons | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user