import pygame class Camera: def __init__(self, screen_width, screen_height, render_buffer=50): self.x = 0 self.y = 0 self.target_x = 0 self.target_y = 0 self.zoom = 1.0 self.target_zoom = 1.0 self.smoothing = 0.15 # Higher = more responsive, lower = more smooth self.speed = 700 self.zoom_smoothing = 0.2 # Higher = more responsive, lower = more smooth self.is_panning = False self.last_mouse_pos = None self.screen_width = screen_width self.screen_height = screen_height self.render_buffer = ( render_buffer # Buffer for rendering objects outside the screen ) def update(self, keys, deltatime): # Determine movement direction dx = 0 dy = 0 if keys[pygame.K_w]: dy -= 1 if keys[pygame.K_s]: dy += 1 if keys[pygame.K_a]: dx -= 1 if keys[pygame.K_d]: dx += 1 # Normalize direction length = (dx ** 2 + dy ** 2) ** 0.5 if length > 0: dx /= length dy /= length # Apply movement self.target_x += dx * self.speed * deltatime / self.zoom self.target_y += dy * self.speed * deltatime / self.zoom if keys[pygame.K_r]: self.target_x = 0 self.target_y = 0 # Smooth camera movement with drift smoothing_factor = 1 - pow(1 - self.smoothing, deltatime * 60) self.x += (self.target_x - self.x) * smoothing_factor self.y += (self.target_y - self.y) * smoothing_factor # Snap to target if within threshold threshold = 0.5 if abs(self.x - self.target_x) < threshold: self.x = self.target_x if abs(self.y - self.target_y) < threshold: self.y = self.target_y # Smooth zoom zoom_smoothing_factor = 1 - pow(1 - self.zoom_smoothing, deltatime * 60) self.zoom += (self.target_zoom - self.zoom) * zoom_smoothing_factor # Snap zoom to target if within threshold zoom_threshold = 0.001 if abs(self.zoom - self.target_zoom) < zoom_threshold: self.zoom = self.target_zoom def handle_zoom(self, zoom_delta): # Zoom in/out with mouse wheel zoom_factor = 1.1 if zoom_delta > 0: # Zoom in self.target_zoom *= zoom_factor elif zoom_delta < 0: # Zoom out self.target_zoom /= zoom_factor # Clamp zoom levels self.target_zoom = max(0.1, min(5.0, self.target_zoom)) def start_panning(self, mouse_pos): self.is_panning = True self.last_mouse_pos = mouse_pos def stop_panning(self): self.is_panning = False self.last_mouse_pos = None def pan(self, mouse_pos): if self.is_panning and self.last_mouse_pos: dx = mouse_pos[0] - self.last_mouse_pos[0] dy = mouse_pos[1] - self.last_mouse_pos[1] self.x -= dx / self.zoom self.y -= dy / self.zoom self.target_x = self.x # Sync target position with actual position self.target_y = self.y self.last_mouse_pos = mouse_pos def get_real_coordinates(self, screen_x, screen_y): # Convert screen coordinates to world coordinates world_x = (screen_x - self.screen_width // 2 + self.x * self.zoom) / self.zoom world_y = (screen_y - self.screen_height // 2 + self.y * self.zoom) / self.zoom return world_x, world_y def is_in_view(self, obj_x, obj_y, margin=0): half_w = (self.screen_width + (self.render_buffer * self.zoom)) / ( 2 * self.zoom ) half_h = (self.screen_height + (self.render_buffer * self.zoom)) / ( 2 * self.zoom ) cam_left = self.x - half_w cam_right = self.x + half_w cam_top = self.y - half_h cam_bottom = self.y + half_h return ( cam_left - margin <= obj_x <= cam_right + margin and cam_top - margin <= obj_y <= cam_bottom + margin ) def world_to_screen(self, obj_x, obj_y): screen_x = (obj_x - self.x) * self.zoom + self.screen_width // 2 screen_y = (obj_y - self.y) * self.zoom + self.screen_height // 2 return int(screen_x), int(screen_y) def get_relative_size(self, world_size): # Converts a world size (e.g., radius or width/height) to screen pixels return int(world_size * self.zoom)