118 lines
3.8 KiB
Python

# python
"""
plot_metrics.py
Usage examples:
python plot_metrics.py --csv metrics_combined.csv
python plot_metrics.py --csv metrics_combined.csv --time-col tick --out myplot.png
python plot_metrics.py --csv metrics_combined.csv --cols entity_counts_cells,entity_counts_food
"""
import argparse
from pathlib import Path
import sys
import pandas as pd
import matplotlib.pyplot as plt
COMMON_TIME_COLS = ["tick", "time", "step", "tick_number", "t"]
DEFAULT_PLOT_COLS = ["entity_counts_cells", "entity_counts_food"]
def find_column(df: pd.DataFrame, candidates):
# return the first matching column name from candidates (case-insensitive, substring match)
cols = {c.lower(): c for c in df.columns}
for cand in candidates:
cand_l = cand.lower()
# exact match
if cand_l in cols:
return cols[cand_l]
# substring match
for k, orig in cols.items():
if cand_l in k:
return orig
return None
def main():
p = argparse.ArgumentParser(description="Plot entity counts over time from a metrics CSV")
p.add_argument("--csv", "-c", type=str, default="metrics_combined.csv", help="Path to CSV file")
p.add_argument("--time-col", "-t", type=str, default=None, help="Name of the time column (optional)")
p.add_argument("--cols", type=str, default=None, help="Comma-separated column names to plot (default: entity_counts_cells,entity_counts_food)")
p.add_argument("--out", "-o", type=str, default="metrics_counts_plot.png", help="Output image path")
args = p.parse_args()
csv_path = Path(args.csv)
if not csv_path.exists():
print(f"CSV not found: {csv_path}", file=sys.stderr)
sys.exit(1)
df = pd.read_csv(csv_path)
# detect time column
time_col = None
if args.time_col:
if args.time_col in df.columns:
time_col = args.time_col
else:
print(f"Specified time column `{args.time_col}` not found in CSV columns.", file=sys.stderr)
sys.exit(1)
else:
time_col = find_column(df, COMMON_TIME_COLS)
if time_col is None:
print("Could not auto-detect a time column. Provide one with `--time-col`.", file=sys.stderr)
sys.exit(1)
# determine plot columns
if args.cols:
cols = [c.strip() for c in args.cols.split(",") if c.strip()]
missing = [c for c in cols if c not in df.columns]
if missing:
print(f"Columns not found in CSV: {missing}", file=sys.stderr)
sys.exit(1)
else:
cols = []
for want in DEFAULT_PLOT_COLS:
found = find_column(df, [want])
if found:
cols.append(found)
if not cols:
print(f"Could not find default columns `{DEFAULT_PLOT_COLS}`. Provide `--cols` explicitly.", file=sys.stderr)
sys.exit(1)
# prepare data
df = df[[time_col] + cols].copy()
df[time_col] = pd.to_numeric(df[time_col], errors="coerce")
for c in cols:
df[c] = pd.to_numeric(df[c], errors="coerce")
df = df.dropna(subset=[time_col])
if df.empty:
print("No numeric time values found after cleaning.", file=sys.stderr)
sys.exit(1)
df = df.sort_values(by=time_col)
# plot
plt.figure(figsize=(10, 5))
for c in cols:
plt.plot(df[time_col], df[c], label=c, linewidth=2)
plt.xlabel(time_col)
plt.ylabel("Count")
plt.title("Entity counts over time")
plt.grid(True, linestyle="--", alpha=0.4)
plt.legend()
plt.tight_layout()
out_path = Path(args.out)
plt.savefig(out_path, dpi=150)
print(f"Wrote plot to `{out_path}`")
# also show interactively if running in an environment with a display
try:
plt.show()
except Exception:
pass
if __name__ == "__main__":
main()