46 lines
1.6 KiB
Python

from world.behavioral import BehavioralModel
class CellBrain(BehavioralModel):
def __init__(self):
super().__init__()
# Define input keys
self.inputs = {
'distance': 0.0, # Distance from a food object
'angle': 0.0 # Relative angle to a food object
}
# Define output keys
self.outputs = {
'linear_acceleration': 0.0, # Linear acceleration
'angular_acceleration': 0.0 # Angular acceleration
}
self.weights = {
'distance': 0.1,
'angle': 0.5
}
def tick(self, input_data) -> dict:
"""
Process inputs and produce corresponding outputs.
:param input_data: Dictionary containing 'distance' and 'angle' values
:return: Dictionary with 'linear_acceleration' and 'angular_acceleration' values
"""
# Update internal input state
self.inputs['distance'] = input_data.get('distance', 0.0)
self.inputs['angle'] = input_data.get('angle', 0.0)
# Initialize output dictionary
self.outputs = {'linear_acceleration': self.inputs['distance'] * self.weights['distance'],
'angular_acceleration': self.inputs['angle'] * self.weights['angle']}
return self.outputs
def __repr__(self):
inputs = {key: round(value, 5) for key, value in self.inputs.items()}
outputs = {key: round(value, 5) for key, value in self.outputs.items()}
weights = {key: round(value, 5) for key, value in self.weights.items()}
return f"CellBrain(inputs={inputs}, outputs={outputs}, weights={weights})"