465 lines
20 KiB
Python
465 lines
20 KiB
Python
# ui/hud.py
|
|
"""Handles HUD elements and text overlays."""
|
|
|
|
import pygame
|
|
from config.constants import *
|
|
from world.base.brain import CellBrain, FlexibleNeuralNetwork
|
|
from world.objects import DefaultCell
|
|
import math
|
|
|
|
|
|
class HUD:
|
|
def __init__(self):
|
|
self.font = pygame.font.Font("freesansbold.ttf", FONT_SIZE)
|
|
self.legend_font = pygame.font.Font("freesansbold.ttf", LEGEND_FONT_SIZE)
|
|
|
|
def render_mouse_position(self, screen, camera):
|
|
"""Render mouse position in top left."""
|
|
mouse_x, mouse_y = camera.get_real_coordinates(*pygame.mouse.get_pos())
|
|
mouse_text = self.font.render(f"Mouse: ({mouse_x:.2f}, {mouse_y:.2f})", True, WHITE)
|
|
text_rect = mouse_text.get_rect()
|
|
text_rect.topleft = (HUD_MARGIN, HUD_MARGIN)
|
|
screen.blit(mouse_text, text_rect)
|
|
|
|
def render_fps(self, screen, clock):
|
|
"""Render FPS in top right."""
|
|
fps_text = self.font.render(f"FPS: {int(clock.get_fps())}", True, WHITE)
|
|
fps_rect = fps_text.get_rect()
|
|
fps_rect.topright = (SCREEN_WIDTH - HUD_MARGIN, HUD_MARGIN)
|
|
screen.blit(fps_text, fps_rect)
|
|
|
|
def render_tps(self, screen, actual_tps):
|
|
"""Render TPS in bottom right."""
|
|
tps_text = self.font.render(f"TPS: {actual_tps}", True, WHITE)
|
|
tps_rect = tps_text.get_rect()
|
|
tps_rect.bottomright = (SCREEN_WIDTH - HUD_MARGIN, SCREEN_HEIGHT - HUD_MARGIN)
|
|
screen.blit(tps_text, tps_rect)
|
|
|
|
def render_tick_count(self, screen, total_ticks):
|
|
"""Render total tick count in bottom left."""
|
|
tick_text = self.font.render(f"Ticks: {total_ticks}", True, WHITE)
|
|
tick_rect = tick_text.get_rect()
|
|
tick_rect.bottomleft = (HUD_MARGIN, SCREEN_HEIGHT - HUD_MARGIN)
|
|
screen.blit(tick_text, tick_rect)
|
|
|
|
def render_pause_indicator(self, screen, is_paused):
|
|
"""Render pause indicator when paused."""
|
|
if is_paused:
|
|
pause_text = self.font.render("Press 'Space' to unpause", True, WHITE)
|
|
pause_rect = pause_text.get_rect()
|
|
pause_rect.center = (SCREEN_WIDTH // 2, 20)
|
|
screen.blit(pause_text, pause_rect)
|
|
|
|
def render_selected_objects_info(self, screen, selected_objects):
|
|
"""Render information about selected objects."""
|
|
if len(selected_objects) < 1:
|
|
return
|
|
|
|
max_width = SCREEN_WIDTH - 20
|
|
i = 0
|
|
|
|
for obj in selected_objects:
|
|
text = f"Object: {str(obj)}"
|
|
words = text.split()
|
|
line = ""
|
|
line_offset = 0
|
|
|
|
for word in words:
|
|
test_line = f"{line} {word}".strip()
|
|
test_width, _ = self.font.size(test_line)
|
|
|
|
if test_width > max_width and line:
|
|
obj_text = self.font.render(line, True, WHITE)
|
|
obj_rect = obj_text.get_rect()
|
|
obj_rect.topleft = (HUD_MARGIN, 30 + i * LINE_HEIGHT + line_offset)
|
|
screen.blit(obj_text, obj_rect)
|
|
line = word
|
|
line_offset += LINE_HEIGHT
|
|
else:
|
|
line = test_line
|
|
|
|
if line:
|
|
obj_text = self.font.render(line, True, WHITE)
|
|
obj_rect = obj_text.get_rect()
|
|
obj_rect.topleft = (HUD_MARGIN, 30 + i * LINE_HEIGHT + line_offset)
|
|
screen.blit(obj_text, obj_rect)
|
|
|
|
i += 1
|
|
|
|
def render_legend(self, screen, showing_legend):
|
|
"""Render the controls legend."""
|
|
if not showing_legend:
|
|
legend_text = self.legend_font.render("Press 'L' to show controls", True, WHITE)
|
|
legend_rect = legend_text.get_rect()
|
|
legend_rect.center = (SCREEN_WIDTH // 2, SCREEN_HEIGHT - 20)
|
|
screen.blit(legend_text, legend_rect)
|
|
return
|
|
|
|
# Split into two columns
|
|
mid = (len(KEYMAP_LEGEND) + 1) // 2
|
|
left_col = KEYMAP_LEGEND[:mid]
|
|
right_col = KEYMAP_LEGEND[mid:]
|
|
|
|
legend_font_height = self.legend_font.get_height()
|
|
column_gap = 40 # Space between columns
|
|
|
|
# Calculate max width for each column
|
|
left_width = max(self.legend_font.size(f"{k}: {v}")[0] for k, v in left_col)
|
|
right_width = max(self.legend_font.size(f"{k}: {v}")[0] for k, v in right_col)
|
|
legend_width = left_width + right_width + column_gap
|
|
legend_height = max(len(left_col), len(right_col)) * legend_font_height + 10
|
|
|
|
legend_x = (SCREEN_WIDTH - legend_width) // 2
|
|
legend_y = SCREEN_HEIGHT - legend_height - 10
|
|
|
|
# Draw left column
|
|
for i, (key, desc) in enumerate(left_col):
|
|
text = self.legend_font.render(f"{key}: {desc}", True, WHITE)
|
|
text_rect = text.get_rect()
|
|
text_rect.left = legend_x
|
|
text_rect.top = legend_y + 5 + i * legend_font_height
|
|
screen.blit(text, text_rect)
|
|
|
|
# Draw right column
|
|
for i, (key, desc) in enumerate(right_col):
|
|
text = self.legend_font.render(f"{key}: {desc}", True, WHITE)
|
|
text_rect = text.get_rect()
|
|
text_rect.left = legend_x + left_width + column_gap
|
|
text_rect.top = legend_y + 5 + i * legend_font_height
|
|
screen.blit(text, text_rect)
|
|
|
|
def render_neural_network_visualization(self, screen, cell: DefaultCell) -> None:
|
|
"""Render neural network visualization. This is fixed to the screen size and is not dependent on zoom or camera position."""
|
|
|
|
# Visualization layout constants
|
|
VIZ_WIDTH = 280 # Width of the neural network visualization area
|
|
VIZ_HEIGHT = 300 # Height of the neural network visualization area
|
|
VIZ_RIGHT_MARGIN = VIZ_WIDTH + 50 # Distance from right edge of screen to visualization
|
|
|
|
# Background styling constants
|
|
BACKGROUND_PADDING = 30 # Padding around the visualization background
|
|
BACKGROUND_BORDER_WIDTH = 2 # Width of the background border
|
|
BACKGROUND_COLOR = (30, 30, 30) # Dark gray background color
|
|
|
|
# Title positioning constants
|
|
TITLE_TOP_MARGIN = 20 # Distance above visualization for title
|
|
|
|
# Neuron appearance constants
|
|
NEURON_RADIUS = 8 # Radius of neuron circles
|
|
NEURON_BORDER_WIDTH = 2 # Width of neuron circle borders
|
|
|
|
# Layer spacing constants
|
|
LAYER_VERTICAL_MARGIN = 30 # Top and bottom margin within visualization for neurons
|
|
|
|
# Connection appearance constants
|
|
MAX_CONNECTION_THICKNESS = 4 # Maximum thickness for connection lines
|
|
MIN_CONNECTION_THICKNESS = 1 # Minimum thickness for connection lines
|
|
|
|
# Neuron activation colors
|
|
NEURON_BASE_INTENSITY = 100 # Base color intensity for neurons
|
|
NEURON_ACTIVATION_INTENSITY = 155 # Additional intensity based on activation
|
|
|
|
# Text positioning constants
|
|
ACTIVATION_TEXT_OFFSET = 15 # Distance below neuron for activation value text
|
|
ACTIVATION_DISPLAY_THRESHOLD = 0.01 # Minimum activation value to display as text
|
|
ACTIVATION_TEXT_PRECISION = 2 # Decimal places for activation values
|
|
|
|
# Layer label positioning constants
|
|
LAYER_LABEL_BOTTOM_MARGIN = 15 # Distance below visualization for layer labels
|
|
|
|
# Info text positioning constants
|
|
INFO_TEXT_TOP_MARGIN = 40 # Distance below visualization for info text
|
|
INFO_TEXT_LINE_SPACING = 15 # Vertical spacing between info text lines
|
|
|
|
# Activation value clamping
|
|
ACTIVATION_CLAMP_MIN = -1 # Minimum activation value for visualization
|
|
ACTIVATION_CLAMP_MAX = 1 # Maximum activation value for visualization
|
|
|
|
# --- Tooltip constants ---
|
|
TOOLTIP_X_OFFSET = 12
|
|
TOOLTIP_Y_OFFSET = 8
|
|
TOOLTIP_PADDING_X = 5
|
|
TOOLTIP_PADDING_Y = 3
|
|
TOOLTIP_BG_COLOR = (40, 40, 40)
|
|
TOOLTIP_BORDER_COLOR = WHITE
|
|
TOOLTIP_BORDER_WIDTH = 1
|
|
TOOLTIP_MARGIN = 10
|
|
TOOLTIP_LINE_SPACING = 0 # No extra spacing between lines
|
|
|
|
if not hasattr(cell, 'behavioral_model'):
|
|
return
|
|
|
|
cell_brain: CellBrain = cell.behavioral_model
|
|
|
|
if not hasattr(cell_brain, 'neural_network'):
|
|
return
|
|
|
|
network: FlexibleNeuralNetwork = cell_brain.neural_network
|
|
|
|
# Calculate visualization position
|
|
viz_x = SCREEN_WIDTH - VIZ_RIGHT_MARGIN # Right side of screen
|
|
viz_y = (SCREEN_HEIGHT // 2) - (VIZ_HEIGHT // 2) # Centered vertically
|
|
|
|
layer_spacing = VIZ_WIDTH // max(1, len(network.layers) - 1) if len(network.layers) > 1 else VIZ_WIDTH
|
|
|
|
# Draw background
|
|
background_rect = pygame.Rect(viz_x - BACKGROUND_PADDING, viz_y - BACKGROUND_PADDING,
|
|
VIZ_WIDTH + 2 * BACKGROUND_PADDING, VIZ_HEIGHT + 2 * BACKGROUND_PADDING)
|
|
pygame.draw.rect(screen, BACKGROUND_COLOR, background_rect)
|
|
pygame.draw.rect(screen, WHITE, background_rect, BACKGROUND_BORDER_WIDTH)
|
|
|
|
# Title
|
|
title_text = self.font.render("Neural Network", True, WHITE)
|
|
title_rect = title_text.get_rect()
|
|
title_rect.centerx = viz_x + VIZ_WIDTH // 2
|
|
title_rect.top = viz_y - TITLE_TOP_MARGIN
|
|
screen.blit(title_text, title_rect)
|
|
|
|
# Get current activations by running a forward pass with current inputs
|
|
input_values = [cell_brain.inputs[key] for key in cell_brain.input_keys]
|
|
|
|
# Store activations for each layer
|
|
activations = [input_values] # Input layer
|
|
|
|
# Calculate activations for each layer
|
|
for layer_idx in range(1, len(network.layers)):
|
|
layer_activations = []
|
|
|
|
for neuron in network.layers[layer_idx]:
|
|
if neuron['type'] == 'input':
|
|
continue
|
|
|
|
# Calculate weighted sum
|
|
weighted_sum = neuron.get('bias', 0)
|
|
|
|
for source_layer, source_neuron, weight in neuron.get('connections', []):
|
|
if source_layer < len(activations) and source_neuron < len(activations[source_layer]):
|
|
weighted_sum += activations[source_layer][source_neuron] * weight
|
|
|
|
# Apply activation function
|
|
activation = max(ACTIVATION_CLAMP_MIN, min(ACTIVATION_CLAMP_MAX, weighted_sum))
|
|
layer_activations.append(activation)
|
|
|
|
activations.append(layer_activations)
|
|
|
|
# Calculate neuron positions
|
|
neuron_positions = {}
|
|
|
|
for layer_idx, layer in enumerate(network.layers):
|
|
layer_neurons = [n for n in layer if n['type'] != 'input' or layer_idx == 0]
|
|
layer_size = len(layer_neurons)
|
|
|
|
if layer_size == 0:
|
|
continue
|
|
|
|
# X position based on layer
|
|
if len(network.layers) == 1:
|
|
x = viz_x + VIZ_WIDTH // 2
|
|
else:
|
|
x = viz_x + (layer_idx * layer_spacing)
|
|
|
|
# Y positions distributed vertically
|
|
if layer_size == 1:
|
|
y_positions = [viz_y + VIZ_HEIGHT // 2]
|
|
else:
|
|
y_start = viz_y + LAYER_VERTICAL_MARGIN
|
|
y_end = viz_y + VIZ_HEIGHT - LAYER_VERTICAL_MARGIN
|
|
y_positions = [y_start + i * (y_end - y_start) / (layer_size - 1) for i in range(layer_size)]
|
|
|
|
for neuron_idx, neuron in enumerate(layer_neurons):
|
|
if neuron_idx < len(y_positions):
|
|
neuron_positions[(layer_idx, neuron_idx)] = (int(x), int(y_positions[neuron_idx]))
|
|
|
|
# Draw connections first (so they appear behind neurons)
|
|
for layer_idx in range(1, len(network.layers)):
|
|
for neuron_idx, neuron in enumerate(network.layers[layer_idx]):
|
|
if neuron['type'] == 'input':
|
|
continue
|
|
|
|
target_pos = neuron_positions.get((layer_idx, neuron_idx))
|
|
if not target_pos:
|
|
continue
|
|
|
|
for source_layer, source_neuron, weight in neuron.get('connections', []):
|
|
source_pos = neuron_positions.get((source_layer, source_neuron))
|
|
if not source_pos:
|
|
continue
|
|
|
|
# Get activation value of the source neuron
|
|
if source_layer < len(activations) and source_neuron < len(activations[source_layer]):
|
|
activation = activations[source_layer][source_neuron]
|
|
else:
|
|
activation = 0.0
|
|
|
|
# Clamp activation to [-1, 1]
|
|
activation = max(ACTIVATION_CLAMP_MIN, min(ACTIVATION_CLAMP_MAX, activation))
|
|
|
|
# Color: interpolate from red (-1) to yellow (0) to green (+1)
|
|
if activation <= 0:
|
|
# Red to yellow
|
|
r = 255
|
|
g = int(255 * (activation + 1))
|
|
b = 0
|
|
else:
|
|
# Yellow to green
|
|
r = int(255 * (1 - activation))
|
|
g = 255
|
|
b = 0
|
|
color = (r, g, b)
|
|
|
|
# Thickness: proportional to abs(weight)
|
|
thickness = max(MIN_CONNECTION_THICKNESS, int(abs(weight) * MAX_CONNECTION_THICKNESS))
|
|
|
|
pygame.draw.line(screen, color, source_pos, target_pos, thickness)
|
|
|
|
# Draw neurons
|
|
for layer_idx, layer in enumerate(network.layers):
|
|
layer_activations = activations[layer_idx] if layer_idx < len(activations) else []
|
|
|
|
for neuron_idx, neuron in enumerate(layer):
|
|
if neuron['type'] == 'input' and layer_idx != 0:
|
|
continue
|
|
|
|
pos = neuron_positions.get((layer_idx, neuron_idx))
|
|
if not pos:
|
|
continue
|
|
|
|
# Get activation value
|
|
activation = 0
|
|
if neuron_idx < len(layer_activations):
|
|
activation = layer_activations[neuron_idx]
|
|
|
|
# Color based on activation: brightness represents magnitude
|
|
activation_normalized = max(ACTIVATION_CLAMP_MIN, min(ACTIVATION_CLAMP_MAX, activation))
|
|
activation_intensity = int(abs(activation_normalized) * NEURON_ACTIVATION_INTENSITY)
|
|
|
|
if activation_normalized >= 0:
|
|
# Positive activation: blue tint
|
|
color = (NEURON_BASE_INTENSITY, NEURON_BASE_INTENSITY, NEURON_BASE_INTENSITY + activation_intensity)
|
|
else:
|
|
# Negative activation: red tint
|
|
color = (NEURON_BASE_INTENSITY + activation_intensity, NEURON_BASE_INTENSITY, NEURON_BASE_INTENSITY)
|
|
|
|
# Draw neuron
|
|
pygame.draw.circle(screen, color, pos, NEURON_RADIUS)
|
|
pygame.draw.circle(screen, WHITE, pos, NEURON_RADIUS, NEURON_BORDER_WIDTH)
|
|
|
|
# Draw activation value as text
|
|
if abs(activation) > ACTIVATION_DISPLAY_THRESHOLD:
|
|
activation_text = self.legend_font.render(f"{activation:.{ACTIVATION_TEXT_PRECISION}f}", True,
|
|
WHITE)
|
|
text_rect = activation_text.get_rect()
|
|
text_rect.center = (pos[0], pos[1] + NEURON_RADIUS + ACTIVATION_TEXT_OFFSET)
|
|
screen.blit(activation_text, text_rect)
|
|
|
|
# Draw layer labels
|
|
num_layers = len(network.layers)
|
|
for layer_idx in range(num_layers):
|
|
if layer_idx == 0:
|
|
label = "Input"
|
|
elif layer_idx == num_layers - 1:
|
|
label = "Output"
|
|
else:
|
|
label = f"Hidden {layer_idx}" if num_layers > 3 else "Hidden"
|
|
|
|
# Find average x position for this layer
|
|
x_positions = [pos[0] for (l_idx, n_idx), pos in neuron_positions.items() if l_idx == layer_idx]
|
|
if x_positions:
|
|
avg_x = sum(x_positions) // len(x_positions)
|
|
|
|
label_text = self.legend_font.render(label, True, WHITE)
|
|
label_rect = label_text.get_rect()
|
|
label_rect.centerx = avg_x
|
|
label_rect.bottom = viz_y + VIZ_HEIGHT + LAYER_LABEL_BOTTOM_MARGIN
|
|
screen.blit(label_text, label_rect)
|
|
|
|
# Draw network info
|
|
info = network.get_structure_info()
|
|
info_lines = [
|
|
f"Layers: {info['total_layers']}",
|
|
f"Neurons: {info['total_neurons']}",
|
|
f"Connections: {info['total_connections']}"
|
|
]
|
|
|
|
for i, line in enumerate(info_lines):
|
|
info_text = self.legend_font.render(line, True, WHITE)
|
|
info_rect = info_text.get_rect()
|
|
info_rect.left = viz_x
|
|
info_rect.top = viz_y + VIZ_HEIGHT + INFO_TEXT_TOP_MARGIN + i * INFO_TEXT_LINE_SPACING
|
|
screen.blit(info_text, info_rect)
|
|
|
|
# --- Tooltip logic for neuron hover ---
|
|
mouse_x, mouse_y = pygame.mouse.get_pos()
|
|
tooltip_text = None
|
|
|
|
for (layer_idx, neuron_idx), pos in neuron_positions.items():
|
|
dx = mouse_x - pos[0]
|
|
dy = mouse_y - pos[1]
|
|
dist = math.hypot(dx, dy)
|
|
if dist <= NEURON_RADIUS + 3:
|
|
neuron = network.layers[layer_idx][neuron_idx]
|
|
label = None
|
|
value_str = None
|
|
|
|
# Show input/output name if applicable
|
|
if neuron['type'] == 'input' and layer_idx == 0:
|
|
if neuron_idx < len(cell_brain.input_keys):
|
|
key = cell_brain.input_keys[neuron_idx]
|
|
label = f"Input: {key}"
|
|
# Show normalized input value
|
|
raw_value = cell_brain.inputs.get(key, 0.0)
|
|
normalized_value = cell_brain._normalize_input(key, raw_value)
|
|
value_str = f"Value: {normalized_value:.2f}"
|
|
elif neuron['type'] == 'output':
|
|
if neuron_idx < len(cell_brain.output_keys):
|
|
key = cell_brain.output_keys[neuron_idx]
|
|
label = f"Output: {key}"
|
|
# Show output value (already actual, not normalized)
|
|
value = cell_brain.outputs.get(key, 0.0)
|
|
value_str = f"Value: {value:.2f}"
|
|
else:
|
|
# For hidden neurons, show activation value
|
|
if layer_idx < len(activations) and neuron_idx < len(activations[layer_idx]):
|
|
value = activations[layer_idx][neuron_idx]
|
|
value_str = f"Value: {value:.2f}"
|
|
|
|
# Show bias if present
|
|
bias = neuron.get('bias', None)
|
|
bias_str = f"Bias: {bias:.2f}" if bias is not None else None
|
|
|
|
# Compose tooltip text
|
|
tooltip_lines = []
|
|
if label:
|
|
tooltip_lines.append(label)
|
|
if value_str:
|
|
tooltip_lines.append(value_str)
|
|
if bias_str:
|
|
tooltip_lines.append(bias_str)
|
|
tooltip_text = "\n".join(tooltip_lines) if tooltip_lines else None
|
|
break
|
|
|
|
if tooltip_text:
|
|
lines = tooltip_text.split('\n')
|
|
tooltip_surfs = [self.legend_font.render(line, True, WHITE) for line in lines]
|
|
width = max(surf.get_width() for surf in tooltip_surfs) + TOOLTIP_MARGIN
|
|
height = sum(surf.get_height() for surf in tooltip_surfs) + TOOLTIP_MARGIN
|
|
|
|
# Default position: right and below cursor
|
|
tooltip_x = mouse_x + TOOLTIP_X_OFFSET
|
|
tooltip_y = mouse_y + TOOLTIP_Y_OFFSET
|
|
|
|
# Adjust if off right edge
|
|
if tooltip_x + width > SCREEN_WIDTH:
|
|
tooltip_x = mouse_x - width - TOOLTIP_X_OFFSET
|
|
# Adjust if off bottom edge
|
|
if tooltip_y + height > SCREEN_HEIGHT:
|
|
tooltip_y = mouse_y - height - TOOLTIP_Y_OFFSET
|
|
|
|
tooltip_rect = pygame.Rect(tooltip_x, tooltip_y, width, height)
|
|
pygame.draw.rect(screen, TOOLTIP_BG_COLOR, tooltip_rect)
|
|
pygame.draw.rect(screen, TOOLTIP_BORDER_COLOR, tooltip_rect, TOOLTIP_BORDER_WIDTH)
|
|
y = tooltip_rect.top + TOOLTIP_PADDING_Y
|
|
for surf in tooltip_surfs:
|
|
screen.blit(surf, (tooltip_rect.left + TOOLTIP_PADDING_X, y))
|
|
y += surf.get_height() + TOOLTIP_LINE_SPACING
|