253 lines
11 KiB
Python
253 lines
11 KiB
Python
# core/renderer.py
|
|
"""Handles all rendering operations."""
|
|
|
|
import pygame
|
|
import math
|
|
from config.constants import *
|
|
from world.base.brain import CellBrain
|
|
|
|
|
|
class Renderer:
|
|
def __init__(self, render_area):
|
|
self.render_area = render_area
|
|
self.render_height = render_area.get_height()
|
|
self.render_width = render_area.get_width()
|
|
|
|
def clear_screen(self, main_screen=None):
|
|
"""Clear the screen with a black background."""
|
|
if main_screen:
|
|
main_screen.fill(BLACK)
|
|
|
|
self.render_area.fill(BLACK)
|
|
|
|
def draw_grid(self, camera, showing_grid=True):
|
|
"""Draw the reference grid."""
|
|
if not showing_grid:
|
|
return
|
|
|
|
# Calculate effective cell size with zoom
|
|
effective_cell_size = CELL_SIZE * camera.zoom
|
|
|
|
# Calculate grid boundaries in world coordinates (centered at 0,0)
|
|
grid_world_width = GRID_WIDTH * effective_cell_size
|
|
grid_world_height = GRID_HEIGHT * effective_cell_size
|
|
|
|
# Calculate grid position relative to camera (with grid centered at 0,0)
|
|
grid_center_x = self.render_width // 2 - camera.x * camera.zoom
|
|
grid_center_y = self.render_height // 2 - camera.y * camera.zoom
|
|
|
|
grid_left = grid_center_x - grid_world_width // 2
|
|
grid_top = grid_center_y - grid_world_height // 2
|
|
grid_right = grid_left + grid_world_width
|
|
grid_bottom = grid_top + grid_world_height
|
|
|
|
# Check if grid is visible on screen
|
|
if (grid_right < 0 or grid_left > self.render_width or
|
|
grid_bottom < 0 or grid_top > self.render_height):
|
|
return
|
|
|
|
# Fill the grid area with dark gray background
|
|
grid_rect = pygame.Rect(
|
|
max(0, grid_left),
|
|
max(0, grid_top),
|
|
min(self.render_width, grid_right) - max(0, grid_left),
|
|
min(self.render_height, grid_bottom) - max(0, grid_top),
|
|
)
|
|
|
|
if grid_rect.width > 0 and grid_rect.height > 0:
|
|
pygame.draw.rect(self.render_area, DARK_GRAY, grid_rect)
|
|
|
|
# Draw grid lines only if zoom is high enough
|
|
if effective_cell_size > 4:
|
|
self._draw_grid_lines(grid_left, grid_top, grid_right, grid_bottom, effective_cell_size)
|
|
|
|
def _draw_grid_lines(self, grid_left, grid_top, grid_right, grid_bottom, effective_cell_size):
|
|
"""Draw the grid lines."""
|
|
vertical_lines = []
|
|
horizontal_lines = []
|
|
|
|
for i in range(max(GRID_WIDTH, GRID_HEIGHT) + 1):
|
|
# Vertical lines
|
|
if i <= GRID_WIDTH:
|
|
line_x = grid_left + i * effective_cell_size
|
|
if 0 <= line_x <= self.render_width:
|
|
start_y = max(0, grid_top)
|
|
end_y = min(self.render_height, grid_bottom)
|
|
if start_y < end_y:
|
|
vertical_lines.append(((line_x, start_y), (line_x, end_y)))
|
|
|
|
# Horizontal lines
|
|
if i <= GRID_HEIGHT:
|
|
line_y = grid_top + i * effective_cell_size
|
|
if 0 <= line_y <= self.render_height:
|
|
start_x = max(0, grid_left)
|
|
end_x = min(self.render_width, grid_right)
|
|
if start_x < end_x:
|
|
horizontal_lines.append(((start_x, line_y), (end_x, line_y)))
|
|
|
|
# Draw all lines
|
|
for start, end in vertical_lines:
|
|
pygame.draw.line(self.render_area, GRAY, start, end)
|
|
for start, end in horizontal_lines:
|
|
pygame.draw.line(self.render_area, GRAY, start, end)
|
|
|
|
def render_world(self, world, camera):
|
|
"""Render all world objects."""
|
|
world.render_all(camera, self.render_area)
|
|
|
|
def render_interaction_radius(self, world, camera, selected_objects, show_radius=False):
|
|
"""Render interaction radius and debug vectors for objects."""
|
|
if not show_radius:
|
|
return
|
|
|
|
for obj in world.get_objects():
|
|
obj_x, obj_y = obj.position.get_position()
|
|
radius = obj.interaction_radius
|
|
|
|
if radius > 0 and camera.is_in_view(obj_x, obj_y, margin=radius):
|
|
if selected_objects and obj not in selected_objects:
|
|
continue
|
|
|
|
screen_x, screen_y = camera.world_to_screen(obj_x, obj_y)
|
|
screen_radius = int(radius * camera.zoom)
|
|
|
|
if screen_radius > 0:
|
|
# Draw interaction radius circle
|
|
pygame.draw.circle(self.render_area, RED, (screen_x, screen_y), screen_radius, 1)
|
|
|
|
# Draw direction arrow
|
|
self._draw_direction_arrow(obj, screen_x, screen_y, camera)
|
|
|
|
# Draw debug vectors
|
|
self._draw_debug_vectors(obj, screen_x, screen_y, camera)
|
|
|
|
def _draw_direction_arrow(self, obj, screen_x, screen_y, camera):
|
|
"""Draw direction arrow for an object."""
|
|
rotation_angle = obj.rotation.get_rotation()
|
|
arrow_length = obj.max_visual_width / 2 * camera.zoom
|
|
|
|
end_x = screen_x + arrow_length * math.cos(math.radians(rotation_angle))
|
|
end_y = screen_y + arrow_length * math.sin(math.radians(rotation_angle))
|
|
|
|
# Draw arrow line
|
|
pygame.draw.line(self.render_area, WHITE, (screen_x, screen_y), (end_x, end_y), 2)
|
|
|
|
# Draw arrowhead
|
|
tip_size = DIRECTION_TIP_SIZE * camera.zoom
|
|
left_tip_x = end_x - tip_size * math.cos(math.radians(rotation_angle + 150 + 180))
|
|
left_tip_y = end_y - tip_size * math.sin(math.radians(rotation_angle + 150 + 180))
|
|
right_tip_x = end_x - tip_size * math.cos(math.radians(rotation_angle - 150 + 180))
|
|
right_tip_y = end_y - tip_size * math.sin(math.radians(rotation_angle - 150 + 180))
|
|
|
|
pygame.draw.polygon(
|
|
self.render_area, WHITE,
|
|
[(end_x, end_y), (left_tip_x, left_tip_y), (right_tip_x, right_tip_y)]
|
|
)
|
|
|
|
def _draw_debug_vectors(self, obj, screen_x, screen_y, camera):
|
|
"""Draw debug vectors (acceleration, velocity, angular acceleration)."""
|
|
# Draw angular acceleration
|
|
if hasattr(obj, 'angular_acceleration'):
|
|
self._draw_angular_acceleration(obj, screen_x, screen_y, camera)
|
|
|
|
# Draw acceleration vector
|
|
if hasattr(obj, 'acceleration') and isinstance(obj.acceleration, tuple) and len(obj.acceleration) == 2:
|
|
self._draw_acceleration_vector(obj, screen_x, screen_y, camera)
|
|
|
|
# Draw velocity vector
|
|
if hasattr(obj, 'velocity') and isinstance(obj.velocity, tuple) and len(obj.velocity) == 2:
|
|
self._draw_velocity_vector(obj, screen_x, screen_y, camera)
|
|
|
|
def _draw_angular_acceleration(self, obj, screen_x, screen_y, camera):
|
|
"""Draw angular acceleration vector."""
|
|
rotation_angle = obj.rotation.get_rotation()
|
|
arrow_length = obj.max_visual_width / 2 * camera.zoom
|
|
end_x = screen_x + arrow_length * math.cos(math.radians(rotation_angle))
|
|
end_y = screen_y + arrow_length * math.sin(math.radians(rotation_angle))
|
|
|
|
angular_acceleration = obj.angular_acceleration
|
|
angular_accel_magnitude = abs(angular_acceleration) * ANGULAR_ACCELERATION_SCALE * camera.zoom
|
|
angular_direction = rotation_angle + 90 if angular_acceleration >= 0 else rotation_angle - 90
|
|
|
|
angular_acc_end_x = end_x + angular_accel_magnitude * math.cos(math.radians(angular_direction))
|
|
angular_acc_end_y = end_y + angular_accel_magnitude * math.sin(math.radians(angular_direction))
|
|
|
|
pygame.draw.line(self.render_area, LIGHT_BLUE, (end_x, end_y), (angular_acc_end_x, angular_acc_end_y), 2)
|
|
|
|
# Draw arrowhead
|
|
self._draw_arrowhead(angular_acc_end_x, angular_acc_end_y, angular_direction,
|
|
ANGULAR_TIP_SIZE * camera.zoom, LIGHT_BLUE)
|
|
|
|
def _draw_acceleration_vector(self, obj, screen_x, screen_y, camera):
|
|
"""Draw acceleration vector."""
|
|
acc_x, acc_y = obj.acceleration
|
|
acc_magnitude = math.sqrt(acc_x ** 2 + acc_y ** 2)
|
|
|
|
if acc_magnitude > 0:
|
|
acc_direction = math.degrees(math.atan2(acc_y, acc_x))
|
|
acc_vector_length = acc_magnitude * ACCELERATION_SCALE * camera.zoom
|
|
acc_end_x = screen_x + acc_vector_length * math.cos(math.radians(acc_direction))
|
|
acc_end_y = screen_y + acc_vector_length * math.sin(math.radians(acc_direction))
|
|
|
|
pygame.draw.line(self.render_area, RED, (screen_x, screen_y), (acc_end_x, acc_end_y), 2)
|
|
self._draw_arrowhead(acc_end_x, acc_end_y, acc_direction,
|
|
ARROW_TIP_SIZE * camera.zoom, RED)
|
|
|
|
def _draw_velocity_vector(self, obj, screen_x, screen_y, camera):
|
|
"""Draw velocity vector."""
|
|
vel_x, vel_y = obj.velocity
|
|
vel_magnitude = math.sqrt(vel_x ** 2 + vel_y ** 2)
|
|
|
|
if vel_magnitude > 0:
|
|
vel_direction = math.degrees(math.atan2(vel_y, vel_x))
|
|
vel_vector_length = vel_magnitude * VELOCITY_SCALE * camera.zoom
|
|
vel_end_x = screen_x + vel_vector_length * math.cos(math.radians(vel_direction))
|
|
vel_end_y = screen_y + vel_vector_length * math.sin(math.radians(vel_direction))
|
|
|
|
pygame.draw.line(self.render_area, BLUE, (screen_x, screen_y), (vel_end_x, vel_end_y), 2)
|
|
self._draw_arrowhead(vel_end_x, vel_end_y, vel_direction,
|
|
ARROW_TIP_SIZE * camera.zoom, BLUE)
|
|
|
|
def _draw_arrowhead(self, end_x, end_y, direction, tip_size, color):
|
|
"""Draw an arrowhead at the specified position."""
|
|
left_tip_x = end_x - tip_size * math.cos(math.radians(direction + 150 + 180))
|
|
left_tip_y = end_y - tip_size * math.sin(math.radians(direction + 150 + 180))
|
|
right_tip_x = end_x - tip_size * math.cos(math.radians(direction - 150 + 180))
|
|
right_tip_y = end_y - tip_size * math.sin(math.radians(direction - 150 + 180))
|
|
|
|
pygame.draw.polygon(
|
|
self.render_area, color,
|
|
[(end_x, end_y), (left_tip_x, left_tip_y), (right_tip_x, right_tip_y)]
|
|
)
|
|
|
|
def render_selection_rectangle(self, selection_rect, sim_view_rect=None):
|
|
"""Render the selection rectangle, offset for sim_view if sim_view_rect is provided."""
|
|
if not selection_rect:
|
|
return
|
|
|
|
left, top, width, height = selection_rect
|
|
|
|
# Offset for sim_view if sim_view_rect is given
|
|
if sim_view_rect is not None:
|
|
left -= sim_view_rect.left
|
|
top -= sim_view_rect.top
|
|
|
|
# Draw semi-transparent fill
|
|
s = pygame.Surface((width, height), pygame.SRCALPHA)
|
|
s.fill(SELECTION_GRAY)
|
|
self.render_area.blit(s, (left, top))
|
|
|
|
# Draw border
|
|
pygame.draw.rect(self.render_area, SELECTION_BORDER,
|
|
pygame.Rect(left, top, width, height), 1)
|
|
|
|
def render_selected_objects_outline(self, selected_objects, camera):
|
|
"""Render blue outline for selected objects."""
|
|
for obj in selected_objects:
|
|
obj_x, obj_y = obj.position.get_position()
|
|
width = obj.max_visual_width if hasattr(obj, "max_visual_width") else 10
|
|
screen_x, screen_y = camera.world_to_screen(obj_x, obj_y)
|
|
size = camera.get_relative_size(width)
|
|
rect = pygame.Rect(screen_x - size // 2, screen_y - size // 2, size, size)
|
|
pygame.draw.rect(self.render_area, SELECTION_BLUE, rect, 1)
|