Compare commits

..

No commits in common. "master" and "ui-rework" have entirely different histories.

13 changed files with 161 additions and 591 deletions

View File

@ -19,8 +19,8 @@ SELECTION_GRAY = (128, 128, 128, 80)
SELECTION_BORDER = (80, 80, 90)
# Grid settings
GRID_WIDTH = 50
GRID_HEIGHT = 50
GRID_WIDTH = 30
GRID_HEIGHT = 25
CELL_SIZE = 20
RENDER_BUFFER = 50

View File

@ -5,7 +5,6 @@ import pygame
import math
from config.constants import *
from world.base.brain import CellBrain
from world.objects import DefaultCell
class Renderer:
@ -14,8 +13,11 @@ class Renderer:
self.render_height = render_area.get_height()
self.render_width = render_area.get_width()
def clear_screen(self):
def clear_screen(self, main_screen=None):
"""Clear the screen with a black background."""
if main_screen:
main_screen.fill(BLACK)
self.render_area.fill(BLACK)
def draw_grid(self, camera, showing_grid=True):
@ -99,9 +101,6 @@ class Renderer:
return
for obj in world.get_objects():
if not isinstance(obj, DefaultCell):
continue
obj_x, obj_y = obj.position.get_position()
radius = obj.interaction_radius

View File

@ -18,29 +18,21 @@ from ui.hud import HUD
class SimulationEngine:
def __init__(self):
pygame.init()
self._init_window()
self._init_ui()
self._init_simulation()
self.running = True
def _init_window(self):
info = pygame.display.Info()
self.window_width = int(info.current_w // 1.5)
self.window_height = int(info.current_h // 1.5)
self.screen = pygame.display.set_mode(
(self.window_width, self.window_height),
pygame.RESIZABLE, vsync=1
)
self.window_width, self.window_height = info.current_w // 2, info.current_h // 2
self.screen = pygame.display.set_mode((self.window_width, self.window_height),
pygame.RESIZABLE, vsync=1)
self.ui_manager = UIManager((self.window_width, self.window_height))
self.camera = Camera(SCREEN_WIDTH, SCREEN_HEIGHT, RENDER_BUFFER)
self._update_simulation_view()
# self.screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT), vsync=1)
pygame.display.set_caption("Dynamic Abstraction System Testing")
self.clock = pygame.time.Clock()
def _init_ui(self):
self.ui_manager = UIManager((self.window_width, self.window_height))
self.hud = HUD(self.ui_manager, self.window_width, self.window_height)
self.hud.update_layout(self.window_width, self.window_height)
self._update_simulation_view()
def _init_simulation(self):
self.last_tick_time = time.perf_counter()
self.last_tps_time = time.perf_counter()
self.tick_counter = 0
@ -50,17 +42,21 @@ class SimulationEngine:
self.world = self._setup_world()
self.input_handler = InputHandler(self.camera, self.world, self.sim_view_rect)
self.renderer = Renderer(self.sim_view)
self.hud = HUD(self.ui_manager, self.window_width, self.window_height)
self.hud.update_layout(self.window_width, self.window_height)
self.running = True
def _update_simulation_view(self):
viewport_rect = self.hud.get_viewport_rect()
self.sim_view_width = viewport_rect.width
self.sim_view_height = viewport_rect.height
self.sim_view_width = int(self.window_width * 0.75)
self.sim_view_height = int(self.window_height * 0.75)
self.sim_view = pygame.Surface((self.sim_view_width, self.sim_view_height))
self.sim_view_rect = self.sim_view.get_rect(topleft=(viewport_rect.left, viewport_rect.top))
self.sim_view_rect = self.sim_view.get_rect(center=(self.window_width // 2, self.window_height // 2))
self.ui_manager.set_window_resolution((self.window_width, self.window_height))
self.renderer = Renderer(self.sim_view)
# Update camera to match new sim_view size
if hasattr(self, 'camera'):
self.camera.screen_width = self.sim_view_width
self.camera.screen_height = self.sim_view_height
@ -68,8 +64,6 @@ class SimulationEngine:
if hasattr(self, 'input_handler'):
self.input_handler.update_sim_view_rect(self.sim_view_rect)
if not hasattr(self, 'camera'):
self.camera = Camera(self.sim_view_width, self.sim_view_height, RENDER_BUFFER)
@staticmethod
def _setup_world():
@ -81,32 +75,23 @@ class SimulationEngine:
if FOOD_SPAWNING:
for _ in range(FOOD_OBJECTS_COUNT):
x = random.randint(-half_width // 2, half_width // 2)
y = random.randint(-half_height // 2, half_height // 2)
x = random.randint(-half_width, half_width)
y = random.randint(-half_height, half_height)
world.add_object(FoodObject(Position(x=x, y=y)))
for _ in range(350):
new_cell = DefaultCell(
Position(x=random.randint(-half_width // 2, half_width // 2), y=random.randint(-half_height // 2, half_height // 2)),
Rotation(angle=0)
)
for _ in range(300):
new_cell = DefaultCell(Position(x=random.randint(-half_width, half_width), y=random.randint(-half_height, half_height)), Rotation(angle=0))
new_cell.behavioral_model = new_cell.behavioral_model.mutate(3)
world.add_object(new_cell)
return world
def _count_cells(self):
count = 0
for entity in self.world.get_objects():
if isinstance(entity, DefaultCell):
count += 1
return count
def run(self):
print(self.world.current_buffer)
while self.running:
self._handle_frame()
pygame.quit()
sys.exit()
@ -114,24 +99,53 @@ class SimulationEngine:
deltatime = self.clock.get_time() / 1000.0
tick_interval = 1.0 / self.input_handler.tps
# Handle events
events = pygame.event.get()
self.running = self.input_handler.handle_events(events, self.hud.manager)
self._handle_window_events(events)
for event in events:
if event.type == pygame.VIDEORESIZE:
self.window_width, self.window_height = event.w, event.h
self.screen = pygame.display.set_mode((self.window_width, self.window_height),
pygame.RESIZABLE)
self._update_simulation_view()
self.hud.update_layout(self.window_width, self.window_height)
if self.input_handler.sprint_mode:
self._handle_sprint_mode()
# Sprint mode: run as many ticks as possible, skip rendering
current_time = time.perf_counter()
while True:
self.input_handler.update_selected_objects()
self.world.tick_all()
self.tick_counter += 1
self.total_ticks += 1
# Optionally break after some time to allow event processing
if time.perf_counter() - current_time > 0.05: # ~50ms per batch
break
# Update TPS every second
if time.perf_counter() - self.last_tps_time >= 1.0:
self.actual_tps = self.tick_counter
self.tick_counter = 0
self.last_tps_time = time.perf_counter()
# No rendering or camera update
self.renderer.clear_screen()
self.hud.render_sprint_debug(self.screen, self.actual_tps, self.total_ticks)
pygame.display.flip()
self.clock.tick(MAX_FPS)
return
# Only process one tick per frame if enough time has passed
if not self.input_handler.is_paused:
current_time = time.perf_counter()
if current_time - self.last_tick_time >= tick_interval:
while current_time - self.last_tick_time >= tick_interval:
self.last_tick_time += tick_interval
self.tick_counter += 1
self.total_ticks += 1
self.input_handler.update_selected_objects()
self.world.tick_all()
self.hud.manager.update(deltatime)
if current_time - self.last_tps_time >= 1.0:
self.actual_tps = self.tick_counter
self.tick_counter = 0
@ -144,85 +158,34 @@ class SimulationEngine:
self._update(deltatime)
self._render()
def _handle_window_events(self, events):
for event in events:
self.hud.process_event(event)
if event.type == pygame.VIDEORESIZE:
self.window_width, self.window_height = event.w, event.h
self.screen = pygame.display.set_mode(
(self.window_width, self.window_height),
pygame.RESIZABLE
)
self._update_simulation_view()
self.hud.update_layout(self.window_width, self.window_height)
self.hud.update_layout(self.window_width, self.window_height)
self._update_simulation_view()
def _handle_sprint_mode(self):
current_time = time.perf_counter()
while True:
self.input_handler.update_selected_objects()
self.world.tick_all()
self.tick_counter += 1
self.total_ticks += 1
pygame.event.pump() # Prevent event queue overflow
if time.perf_counter() - current_time > 0.05:
break
if time.perf_counter() - self.last_tps_time >= 1.0:
self.actual_tps = self.tick_counter
self.tick_counter = 0
self.last_tps_time = time.perf_counter()
self.screen.fill(BLACK)
self.renderer.clear_screen()
cell_count = self._count_cells()
self.hud.render_sprint_debug(self.screen, self.actual_tps, self.total_ticks, cell_count)
pygame.display.flip()
self.clock.tick(MAX_FPS)
self.last_tick_time = time.perf_counter()
def _handle_simulation_ticks(self, tick_interval, deltatime):
current_time = time.perf_counter()
while current_time - self.last_tick_time >= tick_interval:
self.last_tick_time += tick_interval
self.tick_counter += 1
self.total_ticks += 1
self.input_handler.update_selected_objects()
self.world.tick_all()
self.hud.manager.update(deltatime)
if current_time - self.last_tps_time >= 1.0:
self.actual_tps = self.tick_counter
self.tick_counter = 0
self.last_tps_time += 1.0
def _update(self, deltatime):
keys = pygame.key.get_pressed()
self.input_handler.update_camera(keys, deltatime)
def _render(self):
self.screen.fill(BLACK)
self.renderer.clear_screen()
if not self.hud.dragging_splitter:
self.renderer.clear_screen(self.screen)
self.renderer.draw_grid(self.camera, self.input_handler.show_grid)
self.renderer.render_world(self.world, self.camera)
self.renderer.render_interaction_radius(
self.world, self.camera, self.input_handler.selected_objects, self.input_handler.show_interaction_radius
)
self.renderer.render_interaction_radius(self.world, self.camera, self.input_handler.selected_objects, self.input_handler.show_interaction_radius)
self.renderer.render_selection_rectangle(self.input_handler.get_selection_rect(), self.sim_view_rect)
self.renderer.render_selected_objects_outline(self.input_handler.selected_objects, self.camera)
# In core/simulation_engine.py, in _render():
self.screen.blit(self.sim_view, (self.sim_view_rect.left, self.sim_view_rect.top))
self.hud.manager.draw_ui(self.screen)
self.hud.draw_splitters(self.screen)
# Draw border around sim_view
border_color = (255, 255, 255) # White
border_width = 3
pygame.draw.rect(self.screen, border_color, self.sim_view_rect, border_width)
# self.hud.render_mouse_position(self.screen, self.camera, self.sim_view_rect)
self.hud.render_mouse_position(self.screen, self.camera, self.sim_view_rect)
self.hud.render_fps(self.screen, self.clock)
self.hud.render_tps(self.screen, self.actual_tps)
# self.hud.render_tick_count(self.screen, self.total_ticks)
# self.hud.render_selected_objects_info(self.screen, self.input_handler.selected_objects)
self.hud.render_tick_count(self.screen, self.total_ticks)
self.hud.render_selected_objects_info(self.screen, self.input_handler.selected_objects)
self.hud.render_legend(self.screen, self.input_handler.show_legend)
self.hud.render_pause_indicator(self.screen, self.input_handler.is_paused)
if self.input_handler.selected_objects:
self.hud.render_neural_network_visualization(self.screen, self.input_handler.selected_objects[0])

View File

@ -1,8 +1,5 @@
from core.simulation_engine import SimulationEngine
def main():
if __name__ == "__main__":
engine = SimulationEngine()
engine.run()
if __name__ == "__main__":
main()

View File

@ -14,6 +14,5 @@ dependencies = [
[dependency-groups]
dev = [
"psutil>=7.0.0",
"ruff>=0.11.12",
]

View File

@ -1,93 +0,0 @@
import time
import random
import statistics
import hashlib
import pickle
class HeadlessSimulationBenchmark:
def __init__(self, setup_world, random_seed=42):
"""
:param setup_world: Callable that returns a World instance.
:param random_seed: Seed for random number generation.
"""
self.setup_world = setup_world
self.random_seed = random_seed
self.world = None
self.tps_history = []
self._running = False
self.ticks_elapsed_time = None # Track time for designated ticks
def set_random_seed(self, seed):
self.random_seed = seed
random.seed(seed)
def start(self, ticks=100, max_seconds=None):
self.set_random_seed(self.random_seed)
self.world = self.setup_world(self.random_seed)
self.tps_history.clear()
self._running = True
tick_count = 0
start_time = time.perf_counter()
last_time = start_time
# For precise tick timing
tick_timing_start = None
if ticks is not None:
tick_timing_start = time.perf_counter()
while self._running and (ticks is None or tick_count < ticks):
self.world.tick_all()
tick_count += 1
now = time.perf_counter()
elapsed = now - last_time
if elapsed > 0:
self.tps_history.append(1.0 / elapsed)
last_time = now
if max_seconds and (now - start_time) > max_seconds:
break
if ticks is not None:
tick_timing_end = time.perf_counter()
self.ticks_elapsed_time = tick_timing_end - tick_timing_start
else:
self.ticks_elapsed_time = None
self._running = False
def stop(self):
self._running = False
def get_tps_history(self):
return self.tps_history
def get_tps_average(self):
return statistics.mean(self.tps_history) if self.tps_history else 0.0
def get_tps_stddev(self):
return statistics.stdev(self.tps_history) if len(self.tps_history) > 1 else 0.0
def get_simulation_hash(self):
# Serialize the world state and hash it for determinism checks
state = []
for obj in self.world.get_objects():
state.append((
type(obj).__name__,
getattr(obj, "position", None),
getattr(obj, "rotation", None),
getattr(obj, "flags", None),
getattr(obj, "interaction_radius", None),
getattr(obj, "max_visual_width", None),
))
state_bytes = pickle.dumps(state)
return hashlib.sha256(state_bytes).hexdigest()
def get_summary(self):
return {
"tps_avg": self.get_tps_average(),
"tps_stddev": self.get_tps_stddev(),
"ticks": len(self.tps_history),
"simulation_hash": self.get_simulation_hash(),
"ticks_elapsed_time": self.ticks_elapsed_time,
}

View File

@ -1,57 +0,0 @@
import pytest
import random
from world.world import World, Position, Rotation
from world.objects import FoodObject, DefaultCell
from tests.benchmarking import HeadlessSimulationBenchmark
# Hardcoded simulation parameters (copied from config/constants.py)
CELL_SIZE = 20
GRID_WIDTH = 30
GRID_HEIGHT = 25
FOOD_OBJECTS_COUNT = 500
RANDOM_SEED = 12345
def _setup_world(seed=RANDOM_SEED):
world = World(CELL_SIZE, (CELL_SIZE * GRID_WIDTH, CELL_SIZE * GRID_HEIGHT))
random.seed(seed)
half_width = GRID_WIDTH * CELL_SIZE // 2
half_height = GRID_HEIGHT * CELL_SIZE // 2
for _ in range(FOOD_OBJECTS_COUNT):
x = random.randint(-half_width, half_width)
y = random.randint(-half_height, half_height)
world.add_object(FoodObject(Position(x=x, y=y)))
for _ in range(300):
new_cell = DefaultCell(
Position(x=random.randint(-half_width, half_width), y=random.randint(-half_height, half_height)),
Rotation(angle=0)
)
new_cell.behavioral_model = new_cell.behavioral_model.mutate(3)
world.add_object(new_cell)
return world
def test_simulation_determinism():
bench1 = HeadlessSimulationBenchmark(lambda seed: _setup_world(seed), random_seed=RANDOM_SEED)
bench2 = HeadlessSimulationBenchmark(lambda seed: _setup_world(seed), random_seed=RANDOM_SEED)
bench1.start(ticks=100)
bench2.start(ticks=100)
hash1 = bench1.get_simulation_hash()
hash2 = bench2.get_simulation_hash()
assert hash1 == hash2, f"Simulation hashes differ: {hash1} != {hash2}"
def test_simulation_benchmark():
bench = HeadlessSimulationBenchmark(lambda seed: _setup_world(seed), random_seed=RANDOM_SEED+1)
tick_count = 100
bench.start(ticks=tick_count)
summary = bench.get_summary()
print(f"{tick_count} ticks took {summary.get('ticks_elapsed_time', 0):.4f} seconds, TPS avg: {summary['tps_avg']:.2f}, stddev: {summary['tps_stddev']:.2f}")
assert summary['tps_avg'] > 0, "Average TPS should be greater than zero"
assert summary['ticks_elapsed_time'] > 0, "Elapsed time should be greater than zero"

View File

@ -1,12 +1,10 @@
import pytest
from world.world import World, Position, BaseEntity, Rotation
from world.world import World, Position, BaseEntity
class DummyEntity(BaseEntity):
def __init__(self, position, rotation=None):
if rotation is None:
rotation = Rotation(angle=0)
super().__init__(position, rotation)
def __init__(self, position):
super().__init__(position)
self.ticked = False
self.rendered = False
@ -85,6 +83,9 @@ def test_tick_all_calls_tick(world):
def test_add_object_out_of_bounds(world):
entity = DummyEntity(Position(x=1000, y=1000))
world.add_object(entity)
entity = world.get_objects()[0]
assert entity.position.x == 49 and entity.position.y == 49

217
ui/hud.py
View File

@ -6,188 +6,18 @@ import pygame_gui
from config.constants import *
from world.base.brain import CellBrain, FlexibleNeuralNetwork
from world.objects import DefaultCell
from pygame_gui.elements import UIPanel
import math
DARK_GRAY = (40, 40, 40)
DARKER_GRAY = (25, 25, 25)
class HUD:
def __init__(self, ui_manager, screen_width=SCREEN_WIDTH, screen_height=SCREEN_HEIGHT):
self.font = pygame.font.Font("freesansbold.ttf", FONT_SIZE)
self.legend_font = pygame.font.Font("freesansbold.ttf", LEGEND_FONT_SIZE)
self.manager = ui_manager
self.screen_width = screen_width
self.screen_height = screen_height
# Panel size defaults
self.control_bar_height = 48
self.inspector_width = 260
self.properties_width = 320
self.console_height = 120
self.splitter_thickness = 6
self.dragging_splitter = None
self._create_panels()
def _create_panels(self):
# Top control bar
self.control_bar = UIPanel(
relative_rect=pygame.Rect(0, 0, self.screen_width, self.control_bar_height),
manager=self.manager,
object_id="#control_bar",
)
# Left inspector
self.inspector_panel = UIPanel(
relative_rect=pygame.Rect(
0, self.control_bar_height,
self.inspector_width,
self.screen_height - self.control_bar_height
),
manager=self.manager,
object_id="#inspector_panel",
)
# Right properties
self.properties_panel = UIPanel(
relative_rect=pygame.Rect(
self.screen_width - self.properties_width,
self.control_bar_height,
self.properties_width,
self.screen_height - self.control_bar_height
),
manager=self.manager,
object_id="#properties_panel",
)
# Bottom console
self.console_panel = UIPanel(
relative_rect=pygame.Rect(
self.inspector_width,
self.screen_height - self.console_height,
self.screen_width - self.inspector_width - self.properties_width,
self.console_height
),
manager=self.manager,
object_id="#console_panel",
)
self.panels = [
self.control_bar,
self.inspector_panel,
self.properties_panel,
self.console_panel
]
self.dragging_splitter = None
def get_viewport_rect(self):
# Returns the rect for the simulation viewport
x = self.inspector_width
y = self.control_bar_height
w = self.screen_width - self.inspector_width - self.properties_width
h = self.screen_height - self.control_bar_height - self.console_height
return pygame.Rect(x, y, w, h)
def update_layout(self, window_width, window_height):
self.screen_width = window_width
self.screen_height = window_height
# Control bar (top)
self.control_bar.set_relative_position((0, 0))
self.control_bar.set_dimensions((self.screen_width, self.control_bar_height))
# Inspector panel (left) - goes all the way to the bottom
self.inspector_panel.set_relative_position((0, self.control_bar_height))
self.inspector_panel.set_dimensions((self.inspector_width, self.screen_height - self.control_bar_height))
# Properties panel (right) - goes all the way to the bottom
self.properties_panel.set_relative_position(
(self.screen_width - self.properties_width, self.control_bar_height))
self.properties_panel.set_dimensions((self.properties_width, self.screen_height - self.control_bar_height))
# Console panel (bottom, spans between inspector and properties)
self.console_panel.set_relative_position((self.inspector_width, self.screen_height - self.console_height))
self.console_panel.set_dimensions(
(self.screen_width - self.inspector_width - self.properties_width, self.console_height))
def process_event(self, event):
# Handle splitter dragging for resizing panels
if event.type == pygame.MOUSEBUTTONDOWN and event.button == 1:
mx, my = event.pos
# Check if mouse is on a splitter (left/right/bottom)
if abs(mx - self.inspector_width) < self.splitter_thickness and self.control_bar_height < my < self.screen_height - self.console_height:
self.dragging_splitter = "inspector"
elif abs(mx - (self.screen_width - self.properties_width)) < self.splitter_thickness and self.control_bar_height < my < self.screen_height - self.console_height:
self.dragging_splitter = "properties"
elif abs(my - (self.screen_height - self.console_height)) < self.splitter_thickness and self.inspector_width < mx < self.screen_width - self.properties_width:
self.dragging_splitter = "console"
self.update_layout(self.screen_width, self.screen_height)
elif event.type == pygame.MOUSEBUTTONUP and event.button == 1:
self.dragging_splitter = None
elif event.type == pygame.MOUSEMOTION and self.dragging_splitter:
mx, my = event.pos
if self.dragging_splitter == "inspector":
self.inspector_width = max(100, min(mx, self.screen_width - self.properties_width - 100))
elif self.dragging_splitter == "properties":
self.properties_width = max(100, min(self.screen_width - mx, self.screen_width - self.inspector_width - 100))
elif self.dragging_splitter == "console":
self.console_height = max(60, min(self.screen_height - my, self.screen_height - self.control_bar_height - 60))
self.update_layout(self.screen_width, self.screen_height)
def draw_splitters(self, screen):
# Draw draggable splitters for visual feedback
indicator_color = (220, 220, 220)
indicator_size = 6 # Length of indicator line
indicator_gap = 4 # Gap between indicator lines
indicator_count = 3 # Number of indicator lines
# Vertical splitter (inspector/properties)
# Inspector/properties only if wide enough
if self.inspector_width > 0:
x = self.inspector_width - 2
y1 = self.control_bar_height
y2 = self.screen_height - self.console_height
# Draw indicator (horizontal lines) in the middle
mid_y = (y1 + y2) // 2
for i in range(indicator_count):
offset = (i - 1) * (indicator_gap + 1)
pygame.draw.line(
screen, indicator_color,
(x - indicator_size // 2, mid_y + offset),
(x + indicator_size // 2, mid_y + offset),
2
)
if self.properties_width > 0:
x = self.screen_width - self.properties_width + 2
y1 = self.control_bar_height
y2 = self.screen_height - self.console_height
mid_y = (y1 + y2) // 2
for i in range(indicator_count):
offset = (i - 1) * (indicator_gap + 1)
pygame.draw.line(
screen, indicator_color,
(x - indicator_size // 2, mid_y + offset),
(x + indicator_size // 2, mid_y + offset),
2
)
# Horizontal splitter (console)
if self.console_height > 0:
y = self.screen_height - self.console_height + 2
x1 = self.inspector_width
x2 = self.screen_width - self.properties_width
mid_x = (x1 + x2) // 2
for i in range(indicator_count):
offset = (i - 1) * (indicator_gap + 1)
pygame.draw.line(
screen, indicator_color,
(mid_x + offset, y - indicator_size // 2),
(mid_x + offset, y + indicator_size // 2),
2
)
self.manager = ui_manager
def render_mouse_position(self, screen, camera, sim_view_rect):
"""Render mouse position in top left."""
@ -315,7 +145,6 @@ class HUD:
VIZ_WIDTH = 280 # Width of the neural network visualization area
VIZ_HEIGHT = 300 # Height of the neural network visualization area
VIZ_RIGHT_MARGIN = VIZ_WIDTH + 50 # Distance from right edge of screen to visualization
VIZ_BOTTOM_MARGIN = 50 # Distance from the bottom of the screen
# Background styling constants
BACKGROUND_PADDING = 30 # Padding around the visualization background
@ -367,9 +196,6 @@ class HUD:
TOOLTIP_MARGIN = 10
TOOLTIP_LINE_SPACING = 0 # No extra spacing between lines
if self.properties_width < VIZ_RIGHT_MARGIN + 50:
self.properties_width = VIZ_RIGHT_MARGIN + 50 # Ensure properties panel is wide enough for tooltip
if not hasattr(cell, 'behavioral_model'):
return
@ -380,9 +206,9 @@ class HUD:
network: FlexibleNeuralNetwork = cell_brain.neural_network
# Calculate visualization position (bottom right)
# Calculate visualization position
viz_x = self.screen_width - VIZ_RIGHT_MARGIN # Right side of screen
viz_y = self.screen_height - VIZ_HEIGHT - VIZ_BOTTOM_MARGIN # Above the bottom margin
viz_y = (self.screen_height // 2) - (VIZ_HEIGHT // 2) # Centered vertically
layer_spacing = VIZ_WIDTH // max(1, len(network.layers) - 1) if len(network.layers) > 1 else VIZ_WIDTH
@ -392,8 +218,6 @@ class HUD:
pygame.draw.rect(screen, BACKGROUND_COLOR, background_rect)
pygame.draw.rect(screen, WHITE, background_rect, BACKGROUND_BORDER_WIDTH)
info = network.get_structure_info()
# Title
title_text = self.font.render("Neural Network", True, WHITE)
title_rect = title_text.get_rect()
@ -401,13 +225,6 @@ class HUD:
title_rect.top = viz_y - TITLE_TOP_MARGIN
screen.blit(title_text, title_rect)
# Render network cost under the title
cost_text = self.font.render(f"Cost: {info['network_cost']}", True, WHITE)
cost_rect = cost_text.get_rect()
cost_rect.centerx = title_rect.centerx
cost_rect.top = title_rect.bottom + 4 # Small gap below the title
screen.blit(cost_text, cost_rect)
# Get current activations by running a forward pass with current inputs
input_values = [cell_brain.inputs[key] for key in cell_brain.input_keys]
@ -566,6 +383,22 @@ class HUD:
label_rect.bottom = viz_y + VIZ_HEIGHT + LAYER_LABEL_BOTTOM_MARGIN
screen.blit(label_text, label_rect)
# Draw network info
info = network.get_structure_info()
info_lines = [
f"Layers: {info['total_layers']}",
f"Neurons: {info['total_neurons']}",
f"Connections: {info['total_connections']}",
f"Network Cost: {info['network_cost']}",
]
for i, line in enumerate(info_lines):
info_text = self.legend_font.render(line, True, WHITE)
info_rect = info_text.get_rect()
info_rect.left = viz_x
info_rect.top = viz_y + VIZ_HEIGHT + INFO_TEXT_TOP_MARGIN + i * INFO_TEXT_LINE_SPACING
screen.blit(info_text, info_rect)
# --- Tooltip logic for neuron hover ---
mouse_x, mouse_y = pygame.mouse.get_pos()
tooltip_text = None
@ -641,20 +474,22 @@ class HUD:
screen.blit(surf, (tooltip_rect.left + TOOLTIP_PADDING_X, y))
y += surf.get_height() + TOOLTIP_LINE_SPACING
def render_sprint_debug(self, screen, actual_tps, total_ticks, cell_count=None):
def render_sprint_debug(self, screen, actual_tps, total_ticks):
"""Render sprint debug info: header, TPS, and tick count."""
header = self.font.render("Sprinting...", True, (255, 200, 0))
tps_text = self.font.render(f"TPS: {actual_tps}", True, (255, 255, 255))
ticks_text = self.font.render(f"Ticks: {total_ticks}", True, (255, 255, 255))
cell_text = self.font.render(f"Cells: {cell_count}" if cell_count is not None else "Cells: N/A", True, (255, 255, 255))
y = self.screen_height // 2 - 80
y = self.screen_height // 2 - 40
header_rect = header.get_rect(center=(self.screen_width // 2, y))
tps_rect = tps_text.get_rect(center=(self.screen_width // 2, y + 40))
ticks_rect = ticks_text.get_rect(center=(self.screen_width // 2, y + 80))
cell_rect = cell_text.get_rect(center=(self.screen_width // 2, y + 120))
screen.blit(header, header_rect)
screen.blit(tps_text, tps_rect)
screen.blit(ticks_text, ticks_rect)
screen.blit(cell_text, cell_rect)
def update_layout(self, window_width, window_height):
"""Update HUD layout on window resize."""
self.screen_width = window_width
self.screen_height = window_height

21
uv.lock generated
View File

@ -53,7 +53,6 @@ dependencies = [
[package.dev-dependencies]
dev = [
{ name = "psutil" },
{ name = "ruff" },
]
@ -68,10 +67,7 @@ requires-dist = [
]
[package.metadata.requires-dev]
dev = [
{ name = "psutil", specifier = ">=7.0.0" },
{ name = "ruff", specifier = ">=0.11.12" },
]
dev = [{ name = "ruff", specifier = ">=0.11.12" }]
[[package]]
name = "filelock"
@ -210,21 +206,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/88/74/a88bf1b1efeae488a0c0b7bdf71429c313722d1fc0f377537fbe554e6180/pre_commit-4.2.0-py2.py3-none-any.whl", hash = "sha256:a009ca7205f1eb497d10b845e52c838a98b6cdd2102a6c8e4540e94ee75c58bd", size = 220707, upload-time = "2025-03-18T21:35:19.343Z" },
]
[[package]]
name = "psutil"
version = "7.0.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/2a/80/336820c1ad9286a4ded7e845b2eccfcb27851ab8ac6abece774a6ff4d3de/psutil-7.0.0.tar.gz", hash = "sha256:7be9c3eba38beccb6495ea33afd982a44074b78f28c434a1f51cc07fd315c456", size = 497003, upload-time = "2025-02-13T21:54:07.946Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ed/e6/2d26234410f8b8abdbf891c9da62bee396583f713fb9f3325a4760875d22/psutil-7.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:101d71dc322e3cffd7cea0650b09b3d08b8e7c4109dd6809fe452dfd00e58b25", size = 238051, upload-time = "2025-02-13T21:54:12.36Z" },
{ url = "https://files.pythonhosted.org/packages/04/8b/30f930733afe425e3cbfc0e1468a30a18942350c1a8816acfade80c005c4/psutil-7.0.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:39db632f6bb862eeccf56660871433e111b6ea58f2caea825571951d4b6aa3da", size = 239535, upload-time = "2025-02-13T21:54:16.07Z" },
{ url = "https://files.pythonhosted.org/packages/2a/ed/d362e84620dd22876b55389248e522338ed1bf134a5edd3b8231d7207f6d/psutil-7.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fcee592b4c6f146991ca55919ea3d1f8926497a713ed7faaf8225e174581e91", size = 275004, upload-time = "2025-02-13T21:54:18.662Z" },
{ url = "https://files.pythonhosted.org/packages/bf/b9/b0eb3f3cbcb734d930fdf839431606844a825b23eaf9a6ab371edac8162c/psutil-7.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b1388a4f6875d7e2aff5c4ca1cc16c545ed41dd8bb596cefea80111db353a34", size = 277986, upload-time = "2025-02-13T21:54:21.811Z" },
{ url = "https://files.pythonhosted.org/packages/eb/a2/709e0fe2f093556c17fbafda93ac032257242cabcc7ff3369e2cb76a97aa/psutil-7.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f098451abc2828f7dc6b58d44b532b22f2088f4999a937557b603ce72b1993", size = 279544, upload-time = "2025-02-13T21:54:24.68Z" },
{ url = "https://files.pythonhosted.org/packages/50/e6/eecf58810b9d12e6427369784efe814a1eec0f492084ce8eb8f4d89d6d61/psutil-7.0.0-cp37-abi3-win32.whl", hash = "sha256:ba3fcef7523064a6c9da440fc4d6bd07da93ac726b5733c29027d7dc95b39d99", size = 241053, upload-time = "2025-02-13T21:54:34.31Z" },
{ url = "https://files.pythonhosted.org/packages/50/1b/6921afe68c74868b4c9fa424dad3be35b095e16687989ebbb50ce4fceb7c/psutil-7.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:4cf3d4eb1aa9b348dec30105c55cd9b7d4629285735a102beb4441e38db90553", size = 244885, upload-time = "2025-02-13T21:54:37.486Z" },
]
[[package]]
name = "pydantic"
version = "2.11.5"

View File

@ -9,7 +9,6 @@ import pygame
from typing import Optional, List, Any, Union
from world.utils import get_distance_between_objects
from world.physics import Physics
from math import atan2, degrees
@ -264,8 +263,6 @@ class DefaultCell(BaseEntity):
self.tick_count = 0
self.physics = Physics(0.02, 0.05)
def set_brain(self, behavioral_model: CellBrain) -> None:
self.behavioral_model = behavioral_model
@ -300,7 +297,7 @@ class DefaultCell(BaseEntity):
distance_to_food = get_distance_between_objects(self, food_object)
if distance_to_food < self.max_visual_width and food_objects:
self.energy += 130
self.energy += 110
food_object.flag_for_death()
return self
@ -315,10 +312,10 @@ class DefaultCell(BaseEntity):
duplicate_y_2 += random.randint(-self.max_visual_width, self.max_visual_width)
new_cell = DefaultCell(Position(x=int(duplicate_x), y=int(duplicate_y)), Rotation(angle=random.randint(0, 359)))
new_cell.set_brain(self.behavioral_model.mutate(0.05))
new_cell.set_brain(self.behavioral_model.mutate(0.4))
new_cell_2 = DefaultCell(Position(x=int(duplicate_x_2), y=int(duplicate_y_2)), Rotation(angle=random.randint(0, 359)))
new_cell_2.set_brain(self.behavioral_model.mutate(0.05))
new_cell_2.set_brain(self.behavioral_model.mutate(0.4))
return [new_cell, new_cell_2]
@ -331,12 +328,44 @@ class DefaultCell(BaseEntity):
output_data = self.behavioral_model.tick(input_data)
# everything below this point is physics simulation and needs to be extracted to a separate class
# clamp accelerations
output_data["linear_acceleration"] = max(-MAX_ACCELERATION, min(MAX_ACCELERATION, output_data["linear_acceleration"]))
output_data["angular_acceleration"] = max(-MAX_ANGULAR_ACCELERATION, min(MAX_ANGULAR_ACCELERATION, output_data["angular_acceleration"]))
# request physics data from Physics class
self.velocity, self.acceleration, self.rotational_velocity, self.angular_acceleration = self.physics.move(output_data["linear_acceleration"], output_data["angular_acceleration"], self.rotation.get_rotation())
# 2. Apply drag force
drag_coefficient = 0.02
drag_x = -self.velocity[0] * drag_coefficient
drag_y = -self.velocity[1] * drag_coefficient
# 3. Combine all forces
total_linear_accel = output_data["linear_acceleration"]
total_linear_accel = max(-0.1, min(0.1, total_linear_accel))
# 4. Convert to world coordinates
x_component = total_linear_accel * math.cos(math.radians(self.rotation.get_rotation()))
y_component = total_linear_accel * math.sin(math.radians(self.rotation.get_rotation()))
# 5. Add drag to total acceleration
total_accel_x = x_component + drag_x
total_accel_y = y_component + drag_y
self.acceleration = (total_accel_x, total_accel_y)
rotational_drag = 0.05
self.angular_acceleration = output_data["angular_acceleration"] - self.rotational_velocity * rotational_drag
# tick acceleration
velocity_x = self.velocity[0] + self.acceleration[0]
velocity_y = self.velocity[1] + self.acceleration[1]
self.velocity = (velocity_x, velocity_y)
# # clamp velocity
speed = math.sqrt(self.velocity[0] ** 2 + self.velocity[1] ** 2)
if speed > MAX_VELOCITY:
scale = MAX_VELOCITY / speed
self.velocity = (self.velocity[0] * scale, self.velocity[1] * scale)
# tick velocity
x, y = self.position.get_position()
@ -345,12 +374,19 @@ class DefaultCell(BaseEntity):
self.position.set_position(x, y)
# tick rotational acceleration
self.angular_acceleration = output_data["angular_acceleration"]
self.rotational_velocity += self.angular_acceleration
# clamp rotational velocity
self.rotational_velocity = max(-MAX_ROTATIONAL_VELOCITY, min(MAX_ROTATIONAL_VELOCITY, self.rotational_velocity))
# tick rotational velocity
self.rotation.set_rotation(self.rotation.get_rotation() + self.rotational_velocity)
movement_cost = abs(output_data["angular_acceleration"]) + abs(output_data["linear_acceleration"])
self.energy -= (self.behavioral_model.neural_network.network_cost * 0.1) + 1.2 + (0.15 * movement_cost)
self.energy -= (self.behavioral_model.neural_network.network_cost * 0.01) + 1 + (0.5 * movement_cost)
return self

View File

@ -1,82 +0,0 @@
import math
from config.constants import MAX_VELOCITY, MAX_ROTATIONAL_VELOCITY
class Physics:
"""
Simulates basic 2D physics for an object, including linear and rotational motion
with drag effects.
"""
def __init__(self, drag_coefficient: float, rotational_drag: float):
"""
Initialize the Physics object.
Args:
drag_coefficient (float): Linear drag coefficient.
rotational_drag (float): Rotational drag coefficient.
"""
self.drag_coefficient: float = drag_coefficient
self.rotational_drag: float = rotational_drag
self.velocity: tuple[int, int] = (0, 0)
self.acceleration: tuple[int, int] = (0, 0)
self.rotational_velocity: int = 0
self.angular_acceleration: int = 0
def move(self, linear_acceleration: float, angular_acceleration: int, rotational_position):
"""
Update the object's velocity and acceleration based on input forces and drag.
Args:
linear_acceleration (float): The applied linear acceleration.
angular_acceleration (int): The applied angular acceleration.
rotational_position: The current rotational position in degrees.
Returns:
tuple: Updated (velocity, acceleration, rotational_velocity, angular_acceleration).
"""
# Apply drag force
drag_coefficient = self.drag_coefficient
drag_x = -self.velocity[0] * drag_coefficient
drag_y = -self.velocity[1] * drag_coefficient
# Combine all forces
total_linear_accel = linear_acceleration
total_linear_accel = max(-0.1, min(0.1, total_linear_accel))
# Convert to world coordinates
x_component = total_linear_accel * math.cos(math.radians(rotational_position))
y_component = total_linear_accel * math.sin(math.radians(rotational_position))
# Add drag to total acceleration
total_accel_x = x_component + drag_x
total_accel_y = y_component + drag_y
self.acceleration = (total_accel_x, total_accel_y)
# Apply drag force to angular acceleration
rotational_drag = self.rotational_drag
self.angular_acceleration = angular_acceleration - self.rotational_velocity * rotational_drag
# tick acceleration
velocity_x = self.velocity[0] + self.acceleration[0]
velocity_y = self.velocity[1] + self.acceleration[1]
self.velocity = (velocity_x, velocity_y)
# clamp velocity
speed = math.sqrt(self.velocity[0] ** 2 + self.velocity[1] ** 2)
if speed > MAX_VELOCITY:
scale = MAX_VELOCITY / speed
self.velocity = (self.velocity[0] * scale, self.velocity[1] * scale)
self.angular_acceleration = angular_acceleration
self.rotational_velocity += self.angular_acceleration
# clamp rotational velocity
self.rotational_velocity = max(-MAX_ROTATIONAL_VELOCITY, min(MAX_ROTATIONAL_VELOCITY, self.rotational_velocity))
return self.velocity, self.acceleration, self.rotational_velocity, self.angular_acceleration

View File

@ -153,8 +153,6 @@ class World:
:param camera: The camera object for coordinate transformation.
:param screen: The Pygame screen surface.
Time complexity: O(n), where n is the number of objects in the current buffer.
"""
for obj_list in self.buffers[self.current_buffer].values():
for obj in obj_list:
@ -163,9 +161,6 @@ class World:
def tick_all(self) -> None:
"""
Advances all objects in the world by one tick, updating their state and handling interactions.
Time complexity: O(N + K) / O(N*M), where N is the number of objects in the current buffer,
K is the number of objects that can interact with each object, and M is number of objects in checked cells where C is the number of cells checked within the interaction radius.
"""
next_buffer: int = 1 - self.current_buffer
self.buffers[next_buffer].clear()
@ -213,8 +208,6 @@ class World:
:param y: Y coordinate of the center.
:param radius: Search radius.
:return: List of objects within the radius.
Time complexity: O(C * M) / O(N), where C is the number of cells checked within the radius and M is the number of objects in those cells.
"""
result: List[BaseEntity] = []
cell_x, cell_y = int(x // self.partition_size), int(y // self.partition_size)
@ -241,8 +234,6 @@ class World:
:param x2: Maximum X coordinate.
:param y2: Maximum Y coordinate.
:return: List of objects within the rectangle.
Time complexity: O(C * M) / O(N), where C is the number of cells checked within the rectangle and M is the number of objects in those cells.
"""
result: List[BaseEntity] = []
cell_x1, cell_y1 = (